精英家教网 > 高中数学 > 题目详情
14.如图为函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)图象的一部分.
(1)当x∈[-$\frac{π}{12}$,$\frac{π}{2}$]时,求函数f(x)的值域;
(2)若将函数y=f(x)图象向左平移$\frac{π}{6}$的单位后,得到函数y=g(x)的图象,若g(x)≥$\frac{\sqrt{3}}{2}$,求x的取值范围.

分析 (1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
(2)利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的图象和性质,求得g(x)≥$\frac{\sqrt{3}}{2}$的解集.

解答 解:(1)根据函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)图象,可得A=$\sqrt{3}$,
$\frac{T}{2}$=$\frac{1}{2}•\frac{2π}{ω}$=$\frac{5π}{6}$-$\frac{π}{3}$,∴ω=2,再根据五点法作图可得2•$\frac{π}{3}$+φ=0,∴φ=-2•$\frac{π}{3}$,
函数f(x)=$\sqrt{3}$sin(2x-$\frac{2π}{3}$).
当x∈[-$\frac{π}{12}$,$\frac{π}{2}$]时,2x-$\frac{2π}{3}$∈[-$\frac{5π}{6}$,$\frac{π}{3}$],sin(2x+$\frac{π}{3}$)∈[-1,$\frac{\sqrt{3}}{2}$],
∴f(x)∈[-$\sqrt{3}$,$\frac{3}{2}$].
(2)将函数y=f(x)图象向左平移$\frac{π}{6}$的单位后,得到函数y=g(x)=$\sqrt{3}$sin(2x+$\frac{π}{3}$-$\frac{2π}{3}$)
=$\sqrt{3}$sin(2x-$\frac{π}{3}$)的图象,
若g(x)≥$\frac{\sqrt{3}}{2}$,则sin(2x-$\frac{π}{3}$)≥$\frac{1}{2}$,∴2kπ+$\frac{π}{6}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{5π}{6}$,∴kπ+$\frac{π}{4}$≤x≤kπ+$\frac{7π}{12}$,k∈Z,
即要求的x的取值范围为 (kπ+$\frac{π}{4}$,kπ+$\frac{7π}{12}$  ),k∈Z.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值;函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象和性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.中国古代数学名著《九章算术》中记载了公元前344年商鞅造的一种标准量器--商鞅铜方升,其三视图如图所示(单位:寸),若π取为3,其体积为12.6(立方升),则三视图中x的为(  )
A.3.4B.4.0C.3.8D.3.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△abc中,三边之比a:b:c=2:3:4,则$\frac{sinA-2sinB}{sinC}$=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{lnx+m}{{e}^{x}}$,曲线y=f(x)在点(1,f(1))处的切线与x轴平行
(1)函数f(x)是否存在极值?若存在,请求出,若不存在,请说明理由.
(2)已知g(x)=$\frac{{e}^{2x-1}}{x+1}$,求证:当x>0时,g(x)>1+lnx恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:x>y>0,则-x<-y,q:若x>y,则x2>y2.在下列四个命题:p∧q,p∨q,p∧?q,(?p)∨q中,真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.计算:sin187°cos52°+cos7°sin52°=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.△ABC中,角A,B,C的对边分别为a,b,c,若2bcosC-c=2a,a=3,且AC边上的中线长为$\frac{{\sqrt{19}}}{2}$,则c=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)设有6个不同的小球,放入3个不同的盒子里,允许有盒子为空,有多少种不同的放法?
(2)设有6个不同的小球,放入3个不同的盒子里,盒子不允许为空,有多少种不同的放法?.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若$sin(\frac{π}{3}+α)=\frac{1}{3}$,则$cos(α-\frac{7π}{6})$=$-\frac{1}{3}$.

查看答案和解析>>

同步练习册答案