精英家教网 > 高中数学 > 题目详情
11.设函数f(x)=ax-(k-1)a-x(a>0,a≠1)是定义域为R的奇函数
(Ⅰ)若f(1)>0,试求使不等式f(x2+tx)+f(2x+1)>0在定义域上恒成立的t的取值范围;
(Ⅱ)若f(1)=$\frac{8}{3}$,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.

分析 (Ⅰ)根据函数的奇偶性求出k的值,根据f(1)>0求出a的值,根据函数的单调性将不等式进行转化即可,
(Ⅱ)由f(1)=$\frac{8}{3}$,求出a的值,利用换元法结合一元二次函数的最值性质进行求解.

解答 解:(Ⅰ)∵f(x)是定义域为R的奇函数,
∴f(0)=0,∴1-(k-1)=0,∴k=2.
∵函数f(x)=ax-a-x(a>0且a≠1),
∵f(1)>0,∴a-$\frac{1}{a}$>0,又 a>0,∴a>1.
由于y=ax单调递增,y=a-x单调递减,故f(x)在R上单调递增.
不等式化为:f(x2+tx)>f(-2x-1).
∴x2+tx>-2x-1,即  x2+(t+2)x+1>0 恒成立,
∴△=(t+2)2-4<0,解得-4<t<0.
(Ⅱ)∵f(1)=$\frac{8}{3}$,$a-\frac{1}{a}=\frac{8}{3}$,即3a2-8a-3=0,
∴a=3,或 a=-$\frac{1}{3}$(舍去).
∴g(x)=32x+3-2x-2m(3x-3-x)=(3x-3-x2-2m(3x-3-x)+2.
令t=f(x)=3x-3-x
由(1)可知k=2,
故f(x)=3x-3-x,显然是增函数.
∵x≥1,∴t≥f(1)=$\frac{8}{3}$,
令h(t)=t2-2mt+2=(t-m)2+2-m2($t≥\frac{8}{3}$),
若$m≥\frac{8}{3}$,当t=m时,$h{(t)_{min}}=h(m)=2-{m^2}=-2$,
∴m=2(舍去)
若$m<\frac{8}{3}$,当t=$\frac{8}{3}$时,$h{(t)_{min}}=h(\frac{8}{3})={(\frac{8}{3})^2}-\frac{16}{3}m+2=-2$,
解得m=$\frac{25}{12}$<$\frac{8}{3}$,
综上可知m=$\frac{25}{12}$.

点评 本题主要考查指数函数的性质,利用函数的奇偶性和单调性求出参数,利用换元法转化为一元二次函数是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知集合A={-2,-1,0,1,2,3},集合$B=\{x∈R|-1≤x<\frac{3}{2}\}$,则A∩B等于(  )
A.{-2,-1,0,1}B.{-1,0,1}C.{-1,0,1,2}D.{-1,0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在平面内点O是直线AB外一点,点C在直线AB上,若$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,则λ+μ=1;类似地,如果点O是空间内任一点,点A,B,C,D中任意三点均不共线,并且这四点在同一平面内,若$\overrightarrow{OD}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,则x+y+z等于(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线$l:\left\{\begin{array}{l}x=1+tcos({α-\frac{π}{2}})\\ y=-2+tsin({α-\frac{π}{2}})\end{array}\right.$(其中t为参数,$0<α<\frac{π}{2}$)的倾斜角为(  )
A.αB.$\frac{π}{2}-α$C.$\frac{π}{2}+α$D.$α-\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(ax2+x-1)ex,其中e是自然对数的底数,a∈R.
(Ⅰ)若a=0,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若$a≤-\frac{1}{2}$,求f(x)的单调区间;
(Ⅲ)若a=-1,函数f(x)的图象与函数$g(x)=\frac{2}{3}{x^3}+{x^2}+m$的图象仅有1个公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.三个人独立地翻译密码,每人译出此密码的概率依次为$\frac{1}{2}$,$\frac{1}{3}$,$\frac{3}{4}$,则恰有两人译出密码的概率为$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=\frac{2x}{x+1}$,函数g(x)=ax-2a+2(a>0),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是$[\frac{1}{2},2]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}满足a1=a(a∈N*).a1+a2+…+an-pan+1=0(p≠0,p≠-1)n∈N*).
(1)数列{an}的通项公式;
(2)对每一个正整数k,若将ak+1,ak+2,ak+3按从小到大的顺序排列后,此三项均能构成等差数列,且记公差为dk.求p的值及相应的数列{dk}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)计算:log535+2log${\;}_{\frac{1}{2}}$$\sqrt{2}$-log5$\frac{1}{50}$-log514.
(2)化简:(0.027)${\;}^{-\frac{1}{3}}$-(-$\frac{1}{6}$)-2+2560.75-|-3|-1+(-5.55)0-10(2-$\sqrt{3}$)-1

查看答案和解析>>

同步练习册答案