精英家教网 > 高中数学 > 题目详情
若(x2+1)(x-3)9=a0+a1(x-2)2+a3(x-2)3+…+a11(x-2)11,则a1+a2+a3+…+a11的值为
 
考点:二项式系数的性质
专题:二项式定理
分析:在所给的等式中,令x=2可得a0=-5,在所给的等式中,令x=3,可得a0+a1+a2+a3+…+a11=0,从而求得a1+a2+a3+…+a11的值.
解答: 解:在所给的等式中,令x=2可得a0=-5,在所给的等式中,令x=3,
可得a0+a1+a2+a3+…+a11=0,∴a1+a2+a3+…+a11=5,
故答案为:5.
点评:本题主要考查二项式定理的应用,是给变量赋值的问题,关键是根据要求的结果,选择合适的数值代入,属于基题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-3x2,a∈R.
(1)若a>0,讨论函数f(x)的单调性;
(2)若函数f(x)在区间[0,1]上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

先后抛掷一枚骰子,得到的点数分别记为a,b,按以下程序进行运算:
(1)若a=6,b=3,求程序运行后计算机输出的y的值;
(2)若“输出y的值是3”为事件A,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项an=n2+n,试问是否存在常数p,q,使等式
1
1+a1
+
1
2+a2
+…
1
n+an
=
pn2+qn
4(n+1)(n+2)
对一切自然数n都成立.若存在,求出p,q的值.并用数学归纳法证明,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+x2-xlna(a>0,a≠1).
(1)求证:函数f(x)在(0,+∞)上单调递增;
(2)若函数y=f(x)-t有零点,求t的最小值;
(3)若x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

正五边形ABCDE中,若把顶点A、B、C、D、E 染上红、黄、绿、黑四种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有
 
 种.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+3ax2+3ax+1既有极大值又有极小值,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式是an=n(n∈N*),数列{an}的前n项的和记为Sn,则
1
S1
+
1
S2
+
1
S3
+…+
1
S10
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某人连续5次投掷飞镖的环数分别为9,10,8,10,8,则该组数据的方差为
 

查看答案和解析>>

同步练习册答案