精英家教网 > 高中数学 > 题目详情
正五边形ABCDE中,若把顶点A、B、C、D、E 染上红、黄、绿、黑四种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有
 
 种.
考点:排列、组合及简单计数问题
专题:应用题,排列组合
分析:首先A选取一种颜色,再分A的两个相邻点颜色相同、不同,根据计数原理得到结果.
解答: 解:由题意知本题需要分类来解答,
首先A选取一种颜色,有4种情况.
如果A的两个相邻点颜色相同,3种情况;
这时最后两个边有3+
A
2
3
=9种情况;
如果A的两个相邻点颜色不同,
A
2
3
=6种情况;
这时最后两个边有2+
A
2
2
+3=7种情况.
∴方法共有4(3×9+6×7)=276种.
故答案为:276
点评:本题考点是计数原理的运用,考查了分步原理与分类原理,解题的关键是理解题意,将问题分步解决,本题词考查推理判断的能力及利用计数原理计数的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

根据下列各题中的条件,求相应的等差数列{an}未知数:
(1)a1=
5
6
,d=-
1
6
,Sn=-5,求n及an; 
(2)d=2,n=15,an=-10,求a1及Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2ex-1-
1
3
x3-x2
(1)讨论函数f(x)的单调性,
(2)设g(x)=
2
3
x3-x2,求证:对任意实数x,都有f(x)≥g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的焦距为2
3
,且经过点(2,0),直线y=kx+m与椭圆相交于A,B两点,O为坐标原点.
(1)求椭圆的标准方程;
(2)设△AOB面积为S,|AB|=2,S=1,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若(x2+1)(x-3)9=a0+a1(x-2)2+a3(x-2)3+…+a11(x-2)11,则a1+a2+a3+…+a11的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2-ax+b,a,b∈R.若f(x)在区间(-∞,1)上单调递减,则a的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…则a9+b9=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1-cosx
2sinx-1
+log2(2cosx+
2
)的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

随机变量ξ~B(3,
1
2
),则D(2ξ+1)的值为
 

查看答案和解析>>

同步练习册答案