精英家教网 > 高中数学 > 题目详情
13.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),(点P与点A,B不重合),则△PAB的面积最大值是(  )
A.$2\sqrt{5}$B.5C.$\frac{5}{2}$D.$\sqrt{5}$

分析 动直线x+my=0,令y=0,解得x=0,因此此直线过定点A(0,0).动直线mx-y-m+3=0,即m(x-1)+3-y=0,令x-1=0,3-y=0,可得此直线过定点B(1,3).分类讨论:m=0时,两条直线分别为x=0,y=3,交点P(0,3),可得S△PAB=$\frac{3}{2}$.m≠0时,两条直线的斜率分别为:-$\frac{1}{m}$,m,则-$\frac{1}{m}$×m=-1,因此两条直线相互垂直.
当PA=PB时,△PAB的面积取得最大值.即可得出.

解答 解:动直线x+my=0,令y=0,解得x=0,因此此直线过定点A(0,0).
动直线mx-y-m+3=0,即m(x-1)+3-y=0,令x-1=0,3-y=0,解得x=1,y=3,因此此直线过定点B(1,3).
m=0时,两条直线分别为x=0,y=3,交点P(0,3),S△PAB=$\frac{1}{2}×1×3$=$\frac{3}{2}$.
m≠0时,两条直线的斜率分别为:-$\frac{1}{m}$,m,则-$\frac{1}{m}$×m=-1,因此两条直线相互垂直.
当PA=PB时,△PAB的面积取得最大值.
由$\sqrt{2}$PA=AB=$\sqrt{{1}^{2}+{3}^{2}}$=$\sqrt{10}$.解得PA=$\sqrt{5}$.
∴S△PAB=$\frac{1}{2}P{A}^{2}$=$\frac{5}{2}$.
综上可得:△PAB的面积最大值是$\frac{5}{2}$.
故选:C.

点评 本题考查了直线方程、三角形面积计算公式、相互垂直的直线斜率之间的关系、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知直线y=x+m与抛物线x2=4y相切,且与x轴的交点为M,点N(-1,0).若动点P与两定点M,N所构成三角形的周长为6.  
(Ⅰ) 求动点P的轨迹C的方程;
 (Ⅱ) 设斜率为$\frac{1}{2}$的直线l交曲线C于A,B两点,当PN⊥MN时,证明:∠APN=∠BPN.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列说法中,所有正确说法的序号是②④.
①终边落在y轴上的角的集合是{α|α=$\frac{kπ}{2}$,k∈Z};
②函数y=2cos(x-$\frac{π}{4}$)图象的一个对称中心是($\frac{3π}{4}$,0);
③函数y=tanx在第一象限是增函数;
④已知$f(x)=2asin(2x+\frac{π}{6})-2a+b,(a>0)$,$x∈[\frac{π}{4},\frac{3π}{4}]$,f(x)的值域为$\{y|-3≤y≤\sqrt{3}-1\}$,则a=b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设x,y满足不等式组$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,若z=ax+by(a>0,b>0)的最大值为4,则$\frac{1}{a}+\frac{2}{3b}$的最小值为4..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l:x-$\sqrt{3}$y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则|CD|=(  )
A.$2\sqrt{3}$B.4C.$4\sqrt{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在边长为2的正方形ABCD中,$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{BC}$,点F在线段AB上运动,则$\overrightarrow{FD}•\overrightarrow{FE}$的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.对任意两实数a、b,定义运算“max{a,b}”如下:max{a,b}=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,则关于函数f(x)=max{sinx,cosx},下列命题中:
①函数f(x)的值域为[-$\frac{\sqrt{2}}{2}$,1];         
②函数f(x)是周期函数;
③函数f(x)的对称轴为x=kπ+$\frac{π}{4}(k∈{Z})$;
④当且仅当x=2kπ(k∈Z)时,函数f(x)取得最大值1;
⑤当且仅当2kπ<x<2kπ+$\frac{3}{2}π(k∈{Z})$时,f(x)<0;
正确的是①②③(填上你认为正确的所有答案)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{lnx+k}{{e}^{x}}$,曲线y=f(x)在点(1,f(1))处的切线与x轴平行
(1)函数f(x)是否存在极值?若存在,请求出,若不存在,请说明理由.
(2)若ex≥x+t恒成立,求t的取值范围.
(3)已知g(x)=$\frac{{e}^{2x-1}}{x+1}$,求证:当x>0时,g(x)>1+lnx恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,内角A,B,C的对边分别为a,b,c,若$a=3,b=\sqrt{6},∠A=\frac{2π}{3}$,则∠B=(  )
A.$\frac{π}{4}$或$\frac{π}{6}$B.$\frac{π}{12}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

同步练习册答案