精英家教网 > 高中数学 > 题目详情
20.若直线kx+y+4=0上存在点P,过点P作圆x2+y2-2y=0的切线,切点为Q,若|PQ|=2,则实数k的取值范围是(  )
A.[-2,2]B.[2,+∞)C.(-∞,-2]∪[2,+∞)D.(-∞,-1]∪[1,+∞)

分析 利用PQ是圆C:x2+y2-2y=0的一条切线,Q是切点,PQ长度最小值为2,可得圆心到直线的距离PC最小,由点到直线的距离公式可得k的取值范围.

解答 解:圆C:x2+y2-2y=0的圆心(0,1),半径是r=1,
由题意,PQ是圆C:x2+y2-2y=0的一条切线,Q是切点,PQ长度最小值为2,
∴圆心到直线的距离PC最小,最小值为$\sqrt{5}$,
∴由点到直线的距离公式可得$\frac{|1+4|}{\sqrt{{k}^{2}+1}}$≤$\sqrt{5}$,
∴k≤-2或k≥2,
故选:C

点评 本题考查直线和圆的方程的应用,考查圆的切线,点到直线的距离公式等知识,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.平面向量$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{8}}$都为单位向量,且满足$\overrightarrow{{a}_{i}}$•$\overrightarrow{{a}_{i+1}}$=0(i=1,2,3,…,7),|$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{8}}$|的所有可能的不同值共有(  )个.
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=x2-2x
(Ⅰ)解不等式|f(x)|+|x2+2x|≥6|x|;
(Ⅱ)若实数a满足|x-a|<1,求证:|f(x)-f(a)|<2|a|+3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知等比数列{an}的公比为正数,且a2=1,a3•a9=2a52,则a10等于16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知直线l:x-y+c=0(c∈R),⊙M:(x-2)2+(y-2)2=1,直线l把⊙M分成两段圆弧,弧长之比为λ,其中$\frac{1}{2}$<λ<1,则c={c|-$\frac{\sqrt{2}}{2}$<c<$\frac{\sqrt{2}}{2}$,且 c≠0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在北方某城市随机选取一年内100天的空气污染指数(API)的监测数据,统计结果如下:
 API[0,50](50,100](100,150](150,200](200,250](250,300](300,+∞)
 天数  413183091115
(Ⅰ)已知污染指数API大于300为重度污染,若本次抽取样本数据有34天是在供暖季,其中有9天为重度污染,完成下面的2×2列联表,问有多大把握认为该城市空气重度污染与供暖有关?
非重度污染重度污染合计
供暖季
非供暖季
合计 100
(Ⅱ)某企业由空气污染造成的经济损失S(单位:元)与空气污染指数API(记为ω)的关系式为:S=$\left\{\begin{array}{l}{0,0≤ω≤100}\\{400,100<ω≤300}\\{2000,ω>300}\end{array}\right.$.试估计该企业一个月(30天)内造成的经济损失S的期望
附注:k2=$\frac{n(d-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(K2≥k)0.250.150.100.050.0250.010.0050.001
k1.3232.0722.7063.8415.0256.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=log4(7+6x-x2)的单调递增区间是(-1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在数列{an}中,已知a1=1,an+1-an=sin$\frac{(n+1)π}{2}$,记Sn为数列{an}的前n项和,则S2015=1008.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,若|AB|=1,|AC|=$\sqrt{3}$,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,则其形状为③,$\frac{{\overrightarrow{BA}•\overrightarrow{BC}}}{{|{\overrightarrow{BC}}|}}$=$\frac{1}{2}$(①锐角三角形 ②钝角三角形  ③直角三角形,在横线上填上序号).

查看答案和解析>>

同步练习册答案