精英家教网 > 高中数学 > 题目详情
18.已知F为抛物线C:y2=4x的焦点,点E在C的准线上,且在x轴上方,线段EF的垂直平分线与C的准线交于点Q(-1,$\frac{3}{2}$),与C交于点P,则点P的坐标为(  )
A.(1,2)B.(2,2$\sqrt{2}$)C.(3,2$\sqrt{3}$)D.(4,4)

分析 由抛物线方程求出焦点坐标,设出E的坐标(-1,m),利用EF和QP垂直求得m的值,则QP的方程可求,联立QP的方程与抛物线方程即可求出P的坐标.

解答 解:如图,
由抛物线方程为y2=4x,得F(1,0),设E(-1,m)(m>0),
则EF中点为G(0,$\frac{m}{2}$),${k}_{EF}=-\frac{m}{2}$,又Q(-1,$\frac{3}{2}$),
∴${k}_{QG}=\frac{\frac{3}{2}-\frac{m}{2}}{-1-0}=\frac{m-3}{2}$,则$-\frac{m}{2}•\frac{m-3}{2}=-1$,解得:m=4.
∴${k}_{OG}=\frac{4-3}{2}=\frac{1}{2}$,则QG所在直线方程为y-$\frac{3}{2}$=$\frac{1}{2}(x+1)$,即x-2y+4=0.
联立$\left\{\begin{array}{l}{x-2y+4=0}\\{{y}^{2}=4x}\end{array}\right.$,得$\left\{\begin{array}{l}{x=4}\\{y=4}\end{array}\right.$,即P(4,4),
故选:D.

点评 本题考查了抛物线的简单性质,考查了抛物线的应用,平面解析式的基础知识.考查了考生的基础知识的综合运用和知识迁移的能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,PA=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点.
(1)求证:AD⊥平面PNB;
(2)若平面PAD⊥平面ABCD,求三棱锥P-NBM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an},{bn}满足:a1b1+a2b2+a3b3+…+anbn=(n-1)•2n+1+2(n∈N*).
(Ⅰ)若{bn }是首项为1,公比为2的等比数列,求数列{an}的前n项和Sn
(Ⅱ)若{an}是等差数列,且an≠0,问:{bn}是否是等比数列?若是,求{an}和{bn}的通项公式;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设平行于y轴的直线分别与函数y1=log2x及y2=log2x+2的图象交于B,C两点,点A(m,n)位于函数y2的图象上,若△ABC为正三角形,则m•2n=(  )
A.8$\sqrt{3}$B.12C.12$\sqrt{3}$D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=|x-3|+|2x-4|-a.
(Ⅰ)当a=6时,解不等式f(x)>0;
(Ⅱ)如果关于x的不等式f(x)<0的解集不是空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线C:y2=4x的焦点为F,过点F的直线且交抛物线C于A,B两点,若线段AB中点的横坐标为2,则|AB|=(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若(2x-1)5=a2x5+a4x4+a2x3+a1x2+a1x+a0,对x∈R均成立,则a2+a4=-120.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC中,BC=2,∠ABC=θ.
(Ⅰ)若cos$\frac{θ}{2}$=$\frac{2\sqrt{5}}{5}$,AB=5,求AC的长度;
(Ⅱ)若∠BAC=$\frac{π}{6}$,AB=f(θ),求f(θ)的最大值.

查看答案和解析>>

同步练习册答案