分析 (1)先分类讨论,根据x的范围先去掉绝对值然后再根据绝对值不等式的解法进行求解.
(2)求出函数的最小值,原问题等价为a>[|x-3|+|2x-4|]min,从而求出a的范围;
解答 解:(1)原不等式|x-3|+|2x-4|>6
当x<2时,原不等式化为-3x+1>0,解得x<$\frac{1}{3}$,∴x<$\frac{1}{3}$;
当2≤x≤3时,原不等式化为x-7>0,是∅;
当x>3时,原不等式化为3x-13>0,解得x>$\frac{13}{3}$
综上,原不等式解集为{x|x<$\frac{1}{3}$或x>$\frac{13}{3}$};
(2)y=|x-3|+|2x-4|=$\left\{\begin{array}{l}{-3x+7,x<2}\\{x-1,2≤x≤3}\\{3x-7,x>3}\end{array}\right.$
当x<2时,y>1
当2≤x≤3时,1≤y≤2
当x>3时,y>2
综上y≥1,原问题等价为a>[|x-3|+|2x-4|]min
∴a>1.
点评 此题考查绝对值不等式的解法,运用了分类讨论的思想,解题的关键是去掉绝对值,此类题目是高考常见的题型.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (2,2$\sqrt{2}$) | C. | (3,2$\sqrt{3}$) | D. | (4,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{2}$) | B. | (0,$\frac{1}{2}$] | C. | [2,+∞) | D. | (2,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com