精英家教网 > 高中数学 > 题目详情
14.某四棱锥的三视图如图所示,其中正(主)视图是等腰直角三角形,侧(左)视图是等腰三角形,俯视图是正方形,则该四棱锥的体积是(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.$\frac{8}{3}$

分析 由三视图还原原直观图,可得三棱锥的底面是正方形,侧棱PA垂直于底面,且PA=2,求出底面积后直接代入棱锥的体积公式得答案.

解答 解:由三视图还原原几何体如图,
底面ABCD为正方形,PA⊥底面ABCD,且PA=2,
底面ABCD的对角线线长为2,
则正方形ABCD的边长为$\sqrt{2}$,
∴${S}_{正方形ABCD}=\sqrt{2}×\sqrt{2}=2$,
∴${V}_{P-ABCD}=\frac{1}{3}×{S}_{正方形ABCD}×PA$=$\frac{1}{3}×2×2=\frac{4}{3}$.
故选:B.

点评 本题考查了三视图,考查了棱锥的体积,关键是由三视图还原原直观图,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.下面4个阴影中阴影的面积用定积分可表示为:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在五边形ABCDE中,AB⊥BC,AE∥BC∥FD,F为AB的中点,AB=FD=2BC=2AE,现把此五边形ABCDE沿
FD折成一个60°的二面角.
(Ⅰ)求证:直线CE∥平面ABF;
(Ⅱ)求二面角E-CD-F的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z=$\frac{1+2i}{2-i}$(i为虚数单位),则z的虚部为(  )
A.-1B.0C.1D.i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x2-4≤0},$B=\{x|\frac{x+1}{x-4}<0\}$,则A∪B=(  )
A.{x|-1≤x<2}B.{x|-2≤x<4}C.{x|-1<x<4}D.{x|-4<x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an},{bn}满足:a1b1+a2b2+a3b3+…+anbn=(n-1)•2n+1+2(n∈N*).
(Ⅰ)若{bn }是首项为1,公比为2的等比数列,求数列{an}的前n项和Sn
(Ⅱ)若{an}是等差数列,且an≠0,问:{bn}是否是等比数列?若是,求{an}和{bn}的通项公式;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=|x-3|+|2x-4|-a.
(Ⅰ)当a=6时,解不等式f(x)>0;
(Ⅱ)如果关于x的不等式f(x)<0的解集不是空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知命题p:已知实数a,b,则ab>0是a>0且b>0的必要不充分条件,命题q在曲线y=cosx上存在斜率为$\sqrt{2}$的切线,则下列判断正确的是(  )
A.p是假命题B.q是真命题C.p∧(¬q)是真命题D.(¬p)∧q是真命题

查看答案和解析>>

同步练习册答案