精英家教网 > 高中数学 > 题目详情
13.设平行于y轴的直线分别与函数y1=log2x及y2=log2x+2的图象交于B,C两点,点A(m,n)位于函数y2的图象上,若△ABC为正三角形,则m•2n=(  )
A.8$\sqrt{3}$B.12C.12$\sqrt{3}$D.15

分析 根据题意,设出A、B、C的坐标,由线段BC∥y轴,△ABC是等边三角形,得出AB、AC与BC的关系,求出p、q的值,计算出结果

解答 解:根据题意,设A(m,n),B(x0,log2x0),C(x0,2+log2x0),
∵线段BC∥y轴,△ABC是等边三角形,
∴BC=2,2+log2m=n,
∴m=2n-2
∴4m=2n
又x0-m=$\sqrt{3}$,
∴m=x0-$\sqrt{3}$,
∴x0=m+$\sqrt{3}$;
又2+log2x0-n=1,
∴log2x0=n-1,x0=2n-1=$\frac{{2}^{n}}{2}$;
∴m+$\sqrt{3}$=$\frac{{2}^{n}}{2}$;2m+2$\sqrt{3}$=2n=4m,
∴m=$\sqrt{3}$,2n=4$\sqrt{3}$;
∴m•2n=$\sqrt{3}$×4$\sqrt{3}$=12;
故选:B

点评 本题考查了指数函数与对数函数的图象与性质的应用问题,也考查了指数,对数的运算问题,是较难的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.如图,在长方体ABCD-A1B1C1D1中,AB=3cm,AD=2cm,AA1=1cm,则三棱锥B1-ABD1的体积为1cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.“a=1“是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示的程序框图表示求算式“2×4×8×16×32×64”的值,则判断框内可以填入(  )
A.k<132?B.k<70?C.k<64?D.k<63?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,三棱柱ABC-A1B1C1中,平面ABB1A1⊥底面ABC,AB=BC=CA=$\frac{1}{2}A{A_1}$=1,∠A1AB=120°,D、E分别是BC、A1C1的中点.
(Ⅰ)试在棱AB上找一点F,使DE∥平面A1CF;
(Ⅱ)在(Ⅰ)的条件下,求多面体BCF-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知F为抛物线C:y2=4x的焦点,点E在C的准线上,且在x轴上方,线段EF的垂直平分线与C的准线交于点Q(-1,$\frac{3}{2}$),与C交于点P,则点P的坐标为(  )
A.(1,2)B.(2,2$\sqrt{2}$)C.(3,2$\sqrt{3}$)D.(4,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若△ABC的三边a,b,c及面积S满足S=a2-(b-c)2,则sinA=$\frac{8}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若足球比赛的计分规则是,胜一场得3分,平一场得1分,负一场得0分,则一个队打了14场比赛共得19分的情况种数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在边长为2的正方形ABCD中,E,F分别为BC和DC的中点,则$\overrightarrow{DE}$•$\overrightarrow{BF}$=(  )
A.-$\frac{5}{2}$B.$\frac{3}{2}$C.-4D.-2

查看答案和解析>>

同步练习册答案