精英家教网 > 高中数学 > 题目详情
3.如图,在长方体ABCD-A1B1C1D1中,AB=3cm,AD=2cm,AA1=1cm,则三棱锥B1-ABD1的体积为1cm3

分析 利用${V}_{三棱锥{B}_{1}-AB{D}_{1}}$=${V}_{三棱锥{D}_{1}-AB{B}_{1}}$即可得出.

解答 解:由长方体的性质可得:点D1到平面ABB1A1的距离为AD.
${V}_{三棱锥{B}_{1}-AB{D}_{1}}$=${V}_{三棱锥{D}_{1}-AB{B}_{1}}$=$\frac{1}{3}AD•{S}_{△AB{B}_{1}}$=$\frac{1}{3}×2×\frac{1}{2}×3×1$=1,
故答案为:1.

点评 本题考查了三棱锥的体积计算公式、“等体积变形”、线面垂直的判定及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$=(4,2),$\overrightarrow{b}$=(1,3),求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知l:y=kx+b为曲线y=f(x)的“渐近线”,给出定义域均为D={x|x>1}的函数如下:
①f(x)=$\sqrt{x}$;
②f(x)=$\frac{2x-3}{x}$;
③f(x)=$\frac{{x}^{2}+1}{x}$;
④f(x)=$\frac{xlnx+1}{lnx}$;
⑤f(x)=2(x-1-e-x).
其中,曲线y=f(x)存在“渐近线”的有(将序号填到横线上)②③④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式$\left\{\begin{array}{l}{5x+3y≤15}\\{y≤x+1}\\{x-5y≤3}\end{array}\right.$,表示的平面区域的面积为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的焦点,过F做双曲线一条渐近线的垂线与两条渐近线交于P,Q,若$\overline{FP}$=4$\overline{FQ}$,则双曲线的离心率是$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,PA=PD=AD=2,点M在线段PC上,且PM=2MC,N为AD的中点.
(1)求证:AD⊥平面PNB;
(2)若平面PAD⊥平面ABCD,求三棱锥P-NBM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x-alnx,g(x)=-$\frac{1+a}{x}$(a>0).
(Ⅰ)若a=1,求函数f(x)的极值;
(Ⅱ)设函数h(x)=f(x)-g(x),求函数h(x)的单调区间;
(Ⅲ)若存在x0∈[1,e],使得f(x0)<g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=ex-xex-1,g(x)=$\frac{f(x)}{x}$.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)求证:当x>-1,且x≠0时,g(x)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设平行于y轴的直线分别与函数y1=log2x及y2=log2x+2的图象交于B,C两点,点A(m,n)位于函数y2的图象上,若△ABC为正三角形,则m•2n=(  )
A.8$\sqrt{3}$B.12C.12$\sqrt{3}$D.15

查看答案和解析>>

同步练习册答案