精英家教网 > 高中数学 > 题目详情
5.在直角坐标系xOy中,圆C的参数方程$\left\{\begin{array}{l}x=1+cosφ\\ y=sinφ\end{array}\right.(φ$为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是$ρ(sinθ+\sqrt{3}cosθ)=3\sqrt{3}$,射线$OM:θ={θ_1}(0<{θ_1}<\frac{π}{2})$与圆C的交点为O,P,与直线l的交点为Q,求|OP|•|OQ|的范围.

分析 (1)圆C的参数方程消去参数φ,能求出圆C的普通方程,再由x=ρcosθ,y=ρsinθ,能求出圆C的极坐标方程.
(2)设P(ρ1,θ1),则有ρ1=cosθ1,Q(ρ2,θ1),则${ρ_2}=\frac{{3\sqrt{3}}}{{sin{θ_1}+\sqrt{3}cos{θ_1}}}$,|OP|•|OQ|=ρ1ρ2,结合tanθ1>0,能求出|OP|•|OQ|的范围.

解答 解:(1)∵圆C的参数方程$\left\{\begin{array}{l}x=1+cosφ\\ y=sinφ\end{array}\right.(φ$为参数),
∴消去参数φ,得圆C的普通方程是(x-1)2+y2=1,
又x=ρcosθ,y=ρsinθ,
∴圆C的极坐标方程是ρ=2cosθ.
(2)设P(ρ1,θ1),则有ρ1=2cosθ1,Q(ρ2,θ1),
则有${ρ_2}=\frac{{3\sqrt{3}}}{{sin{θ_1}+\sqrt{3}cos{θ_1}}}$,
∴$|{OP}||{OQ}|={ρ_1}•{ρ_2}=\frac{{6\sqrt{3}cos{θ_1}}}{{sin{θ_1}+\sqrt{3}cos{θ_1}}}=\frac{{6\sqrt{3}}}{{\sqrt{3}+tan{θ_1}}}(0<{θ_1}<\frac{π}{2})$,
∵tanθ1>0,∴0<|OP||OQ|<6.
故|OP|•|OQ|的范围是(0,6).

点评 本题考查圆的极坐标方程的求法,考查两线段的乘积的取值范围的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知{an}数列为正项等比数列,a1=2,a3=8,
(1)求{an}通项公式;
(2)求{nan}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是kA,kB,规定φ(A,B)=$\frac{|{k}_{A}-{k}_{B}|}{|AB{|}^{2}}$叫做曲线y=f(x)在点A,B之间的“平方弯曲度”,设曲线y=ex+x上不同两点A(x1,y1),B(x2,y2),且x1-x2=1,则φ(A,B)的最大值为$\frac{\sqrt{2}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,在长方体ABCD-A1B1C1D1中,O是DB的中点,直线A1C交平面C1BD于点M,则下列结论错误的是(  )
A.C1,M,O三点共线B.C1,M,O,C四点共面
C.C1,O,A1,M四点共面D.D1,D,O,M四点共面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=1+cos(2x+\frac{3π}{2})-\sqrt{3}cos(π-2x)$.
(1)求函数f(x)的单调递增区间;
(2)若关于x的方程f(x)-m=2在$x∈[{0,\frac{π}{2}}]$上有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足:a1=1,a2=a(a>0).数列{bn}满足bn=anan+1(n∈N*).
(1)若{an}是等差数列,且b3=12,求a的值及{an}的通项公式;
(2)当{bn}是公比为a-1的等比数列时,{an}能否为等比数列?若能,求出a的值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若复数$z=({{a^2}-3})-({a+\sqrt{3}})i$为纯虚数,则$\frac{{a+{i^{2011}}}}{{1+\sqrt{3}i}}$=-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC的三个顶点坐标为A(-3,1),B(3,-3),C(1,7).
(1)求BC边上的中线AM的方程;
(2)证明:△ABC为等腰直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在某次水下考古活动中,需要潜水员潜入水深为30米的水底进行作业.其用氧量包含3个方面:①下潜时,平均速度为v(米/单位时间),单位时间内用氧量为v2;②在水底作业需5个单位时间,每个单位时间用氧量为0.4;③返回水面时,平均速度为$\frac{v}{2}$(米/单位时间),单位时间用氧量为0.2.记该潜水员在此次考古活动中,总用氧量为y.
(1)将y表示为v的函数;
(2)试确定下潜速度v,使总的用氧量最少.

查看答案和解析>>

同步练习册答案