分析 根据定义得出φ(A,B)的解析式,利用基本不等式求出最大值.
解答 解:kA-kB=(e${\;}^{{x}_{1}}$+1)-(e${\;}^{{x}_{2}}$+1)=e${\;}^{{x}_{1}}$-e${\;}^{{x}_{2}}$=e${\;}^{{x}_{2}}$(e-1),
|AB|2=(x1-x2)2+(y1-y2)2=(x1-x2)2+[(e${\;}^{{x}_{1}}$-e${\;}^{{x}_{2}}$)+(x1-x2)]2=1+[e${\;}^{{x}_{2}}$(e-1)+1]2
=e${\;}^{2{x}_{2}}$(e-1)2+2e${\;}^{{x}_{2}}$(e-1)+2,
∴φ(A,B)=$\frac{{e}^{{x}_{2}}(e-1)}{{e}^{2{x}_{2}}(e-1)^{2}+2{e}^{{x}_{2}}(e-1)+2}$=$\frac{1}{{e}^{{x}_{2}}(e-1)+\frac{2}{{e}^{{x}_{2}}(e-1)}+2}$≤$\frac{1}{2\sqrt{2}+2}$=$\frac{\sqrt{2}-1}{2}$,
当且仅当e${\;}^{{x}_{2}}$(e-1)=$\frac{2}{{e}^{{x}_{2}}(e-1)}$即x2=ln$\frac{\sqrt{2}}{e-1}$时取等号.
故答案为:$\frac{\sqrt{2}-1}{2}$.
点评 本题考查了函数最值的计算,基本不等式的应用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com