精英家教网 > 高中数学 > 题目详情
11.已知ω>0,平面向量$\overrightarrow{m}$=(2sinωx,$\sqrt{3}$),$\overrightarrow{n}$=(2cos(ωx+$\frac{π}{3}$),1),函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$的最小正周期是π.
( I)求f(x)的解析式和对称轴方程;
( II)求f(x)在$[-\frac{π}{4},\frac{π}{6}]$上的值域.

分析 ( I)根据平面向量数量积的运算和三角恒等变换,化简函数f(x)为正弦型函数,
利用f(x)的最小正周期求出ω的值,写出函数f(x)的解析式,求出f(x)的对称轴方程;
( II)根据x的范围求出sin(2x+$\frac{π}{3}$)的取值范围,即可得出f(x)的值域.

解答 解:( I)向量$\overrightarrow{m}$=(2sinωx,$\sqrt{3}$),$\overrightarrow{n}$=(2cos(ωx+$\frac{π}{3}$),1),
则函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$=4sinωxcos(ωx+$\frac{π}{3}$)+$\sqrt{3}$
=4sinωx($\frac{1}{2}$cosωx-$\frac{\sqrt{3}}{2}$sinωx)+$\sqrt{3}$
=2sinωxcosωx-2$\sqrt{3}$sin2ωx+$\sqrt{3}$
=sin2ωx+$\sqrt{3}$cos2ωx
=2sin(2ωx+$\frac{π}{3}$),
由ω>0得f(x)的最小正周期是T=$\frac{2π}{2ω}$=π,
解得ω=1,
所以函数f(x)=2sin(2x+$\frac{π}{3}$);
由2x+$\frac{π}{3}$=$\frac{π}{2}$+kπ,k∈Z,
解得f(x)的对称轴方程为x=$\frac{π}{12}$+$\frac{kπ}{2}$,k∈Z;
( II)∵$x∈[-\frac{π}{4},\frac{π}{6}]$,
∴2x∈[-$\frac{π}{2}$,$\frac{π}{3}$],
∴$2x+\frac{π}{3}∈[-\frac{π}{6},\frac{2π}{3}]$,
∴sin(2x+$\frac{π}{3}$)∈[-$\frac{1}{2}$,1],
2sin(2x+$\frac{π}{3}$)∈[-1,2],
∴f(x)在$[-\frac{π}{4},\frac{π}{6}]$上的值域是[-1,2].

点评 本题考查了平面向量的数量积与三角函数图象与性质的应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知曲线C的方程为$\frac{{x}^{2}}{{m}^{2}+5}$$+\frac{{y}^{2}}{{m}^{2}+1}$=1(m∈R),命题p:?m∈R使得曲线C的焦距为2,则命题p的否定是(  )
A.?m∈R曲线C的焦距都为2B.?m∈R曲线C的焦距都不为2
C.?m∈R曲线C的焦距不为2D.?m∈R曲线C的焦距不都为2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.从1,2,3,4,5,6,7这七个数中,随机抽取3个不同的数,则这3个数的和为偶数概率是(  )
A.$\frac{3}{7}$B.$\frac{17}{35}$C.$\frac{3}{5}$D.$\frac{19}{35}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.一个样本如下:78 80 81 81 72 77 89 90 92 85,则这个样本的极差是20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若$\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}$是两个单位向量,且(2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)⊥(-2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$),则|$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$|=(  )
A.$\sqrt{6}$B.6C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是kA,kB,规定φ(A,B)=$\frac{|{k}_{A}-{k}_{B}|}{|AB{|}^{2}}$叫做曲线y=f(x)在点A,B之间的“平方弯曲度”,设曲线y=ex+x上不同两点A(x1,y1),B(x2,y2),且x1-x2=1,则φ(A,B)的最大值为$\frac{\sqrt{2}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)求值sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
(2)已知tanα=$\sqrt{3}$,π<α<$\frac{3}{2}$π,求sinα-cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=1+cos(2x+\frac{3π}{2})-\sqrt{3}cos(π-2x)$.
(1)求函数f(x)的单调递增区间;
(2)若关于x的方程f(x)-m=2在$x∈[{0,\frac{π}{2}}]$上有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求证:(1)$\sqrt{6}$+$\sqrt{7}$>2$\sqrt{2}$+$\sqrt{5}$;     (2)a2+b2+c2≥ab+ac+bc.

查看答案和解析>>

同步练习册答案