精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+(a-1)x2+27(a-2)x+b的图象关于原点成中心对称,试判断f(x)在区间[-4,5]上的单调性,并求出f(x)在区间[-4,5]上的最值.
分析:根据函数f(x)的图象关于原点成中心对称,则f(x)是奇函数,求得a、b的值,可得f(x)的解析式,再利用导数研究函数的单调性,由函数的单调性求函数的最值.
解答:解:∵函数f(x)的图象关于原点成中心对称,则f(x)是奇函数,所以,f(0)=b=0,且a-1=0,
解得a=1,b=0,于是f(x)=x3-27x,f′(x)=3x2-27.
∴当x∈(-3,3)时,f′(x)<0;当x∈(-4,-3)和(3,5)时,f′(x)>0.
又∵函数f(x)在[-4,5]上连续.
∴f(x)在(-3,3)上是单调递减函数,在(-4,-3)和(3,5)上是单调递增函数.
∴f(x)的最大值是54,f(x)的最小值是-54.
点评:本题主要考查函数的奇偶性的应用、函数的单调性的判断和证明,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案