精英家教网 > 高中数学 > 题目详情
已知向量
a
=(2,1),
b
=(3,4),则向量
a
在向量
b
方向上正射影的数量为(  )
A、-2
B、2
C、
5
D、5
考点:平面向量数量积的性质及其运算律
专题:平面向量及应用
分析:根据射影的定义,求出向量
a
在向量
b
方向上正射影的数量即可.
解答: 解:根据射影的定义,得
向量
a
在向量
b
方向上正射影的数量是
a
b
|
b
|
=
2×3+1×4
32+42
=2
故选:B.
点评:本题考查了平面向量的应用问题,解题时应根据射影的定义,求出答案来,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

不等式
x-1
x+3
>0的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个命题中,正确的有几个(  )
①直线a,b与平面a所成角相等,则a∥b;
②两直线a∥b,直线a∥平面a,则必有b∥平面a;
③一直线与平面的一斜线在平面a内的射影垂直,则该直线必与斜线垂直;
④两点A,B与平面a的距离相等,则直线AB∥平面a.
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有(  )
A、36种B、30种
C、24种D、6种

查看答案和解析>>

科目:高中数学 来源: 题型:

正奇数按下表排列,则数字2013在(  )
   第一列  第二列  第三列  第四列  第五列
 第一行    1  3  5  7
 第二行  15  13  11  9  
 第三行    17  19  21  23
 第四行  31  29  27  25  
A、第252行,第2列
B、第252行,第3列
C、第153行,第3列
D、第253行,第4列

查看答案和解析>>

科目:高中数学 来源: 题型:

若{an}为等差数列,Sn是其前n项和,且S11=
88π
3
,则tana6=(  )
A、
3
B、-
3
C、
3
3
D、-
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图程序的功能是(  )
A、统计十个数据中负数的个数
B、找出十个数据中的负数
C、判断x的符号
D、求十个数据中所有负数的和

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足a1=2且an+an-1=2n+2n-1,Sn为数列{an}的前n项和,则log2(S2012+2)等于(  )
A、2013B、2012
C、2011D、2010

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别F1、F2焦距为2,且与双曲线
x2
2
-y2=1共顶点.P为椭圆C上一点,直线PF1交椭圆C于另一点Q.
(1)求椭圆C的方程;
(2)若点P的坐标为(0,b),求过P、Q、F2三点的圆的方程;
(3)若
F1P
QF1
,且λ∈[
1
2
,2],求
OP
OQ
的最大值.

查看答案和解析>>

同步练习册答案