分析 先将围成的平面图形的面积用定积分表示出来,然后运用微积分基本定理计算定积分即可.
解答 解:由题意和定积分的意义可得所求面积:
$S={{∫}_{-\frac{π}{3}}}^{\frac{π}{2}}|sinx|dx$
=$-{{∫}_{-\frac{π}{3}}}^{0}sinxdx+{{∫}_{0}}^{\frac{π}{2}}sinxdx$
=$cosx{{|}_{-\frac{π}{3}}}^{0}-cosx{{|}_{0}}^{\frac{π}{2}}$
=$\frac{1}{2}+1$
=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.
点评 本题考查了定积分的几何意义及其求法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | $-\frac{1}{2}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com