精英家教网 > 高中数学 > 题目详情
11.某企业准备投入适当的广告费对产品进行促销,在一年内预计销售Q(万件)与广告费x(万元)之间的函数关系为Q=$\frac{3x+1}{x+1}$(x≥0).已知生产此产品的年固定投入为3万元,每生产1万元此产品仍需再投入32万元,若每件销售价为“平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.
(1)试将年利润W(万元)表示为年广告费x(万元)的函数;
(2)当年广告费投入多少万元时,企业年利润最大?最大利润为多少?

分析 (1)根据生产此产品的年固定投入为3万元,每生产1万件此产品仍需后期再投入32万元,若每件售价为“年平均每件投入的150%”与“年平均每件所占广告费的50%”之和,可建立函数关系式;
(2)利用换元法,再借助于基本不等式,即可求得最值.

解答 解:(1)由题意可得,产品的生产成本为(32Q+3)万元,
每万件销售价为$\frac{32Q+3}{Q}×150%+\frac{x}{Q}×50%$,(2分)
∴年销售收入为$({\frac{32Q+3}{Q}×150%+\frac{x}{Q}×50%})•Q$=$\frac{3}{2}(32Q+3)+\frac{1}{2}x$,(4分)
∴年利润$W=\frac{3}{2}(32Q+3)+\frac{1}{2}x-(32Q+3)-x$=$\frac{1}{2}(32Q+3-x)=\frac{{-{x^2}+98x+35}}{2(x+1)}(x≥0)$.(6分)
(2)令x+1=t(t≥1),则$W=\frac{{-{{(t-1)}^2}+98(t-1)+35}}{2t}=50-({\frac{t}{2}+\frac{32}{t}})$.(8分)
∵t≥1,∴$\frac{t}{2}+\frac{32}{t}≥2\sqrt{\frac{t}{2}•\frac{32}{t}}=8$,即W≤42,(10分)
当且仅当$\frac{t}{2}=\frac{32}{t}$,即t=8时,W有最大值42,此时x=7.
即当年广告费为7万元时,企业利润最大,最大值为42万元.(12分)

点评 本题考查的知识点是函数模型的选择与应用,利用利润=收入-成本,得到年利润的表达式是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在△ABC中,角A、B、C所对的边分别是a,b,c,若b=$\sqrt{3}$,c=3,B=30°,则a=(  )
A.$\sqrt{3}$B.$12\sqrt{3}$C.$\sqrt{3}或2\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列各组中的两个函数是同一函数的为(  )
(1)f(x)=1,g(x)=x0      
(2)f(x)=$\root{3}{{x}^{3}}$,g(x)=$\frac{{x}^{2}}{x}$
(3)f(x)=lnxx,g(x)=elnx
(4)f(x)=$\frac{1}{|x|}$,g(x)=$\frac{1}{\sqrt{{x}^{2}}}$.
A.(1)B.(2)C.(3)D.(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.方程2x+x=0的根所在的区间是(  )
A.(-1,-$\frac{1}{2}$)B.(-$\frac{1}{2}$,0)C.(0,$\frac{1}{2}$)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a>b,c>d,且c,d不为0,那么下列不等式一定成立的是(  )
A.ad>bcB.ac>bdC.a-c>b-dD.a+c>b+d

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等比数列{an}的公比为正数,且a4•a8=2a52,a2=1,则a1=(  )
A.$\frac{1}{2}$B.2C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.不等式x2-x-2>0的解集是(  )
A.(-1,2)B.(-∞,-1)∪(2,+∞)C.(-∞-2)∪(1,+∞)D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题“?x∈R,x<sin x或x>tan x”的否定为(  )
A.?x∈R,x<sinx且x>tanxB.?x∈R,x≥sinx或x≤tanx
C.?x∈R,x<sinx或x>tanxD.?x∈R,x≥sinx且x≤tanx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),离心率为$\frac{{\sqrt{2}}}{2}$,左准线方程是x=-2,设O为原点,点A在椭圆C上,点B在直线y=2上,且OA⊥OB.
(1)求椭圆C的方程;
(2)求△AOB面积取得最小值时,线段AB的长度.

查看答案和解析>>

同步练习册答案