精英家教网 > 高中数学 > 题目详情

【题目】设A1 , A2 , A3 , …,An是集合{1,2,3,…,n}的n个非空子集(n≥2),定义aij= ,其中i,j=1,2,…,n,这样得到的n2个数之和记为S(A1 , A2 , A3 , …,An),简记为S,下列三种说法:①S与n的奇偶性相同;②S是n的倍数;③S的最小值为n,最大值为n2 . 其中正确的判断是(
A.①②
B.①③
C.②③
D.③

【答案】B
【解析】解:把aij按其脚注排成一个数阵的话,如下,对角线上全是1,对角线外,1成对出现,如下:

1)a11=a22=…=ann=1;
2)当i≠j时,若aij=1,则aij=1;
若aij=0,则aij=0;
即对角线上全是1,对角线外,1成对出现,
所以,S=n+2k,k是某一个非负整数,
即:S与n的奇偶性一致,且S最小值是n,
又因为,当A1=A2=…=An时,S=n2
故①③是正确的.
故选:B.
【考点精析】本题主要考查了集合的表示方法-特定字母法的相关知识点,需要掌握①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{|具有的性质},其中为集合的代表元素.④图示法:用数轴或韦恩图来表示集合才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≥ 对任意实数a≠0恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,过点A作⊙O的切钱EP交CB 的延长线于P,己知∠PAB=25°.

(1)若BC是⊙O的直径,求∠D的大小;
(2)若∠DAE=25°,求证:DA2=DCBP.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.

优秀

非优秀

总计

甲班

10

乙班

30

总计

105

已知在全部105人中随机抽取1人为优秀的概率为.

(1)请完成上面的列联表;(把列联表自己画到答题卡上)

(2)根据列联表的数据,若按95%的可靠性要求,能否认为成绩与班级有关系”?

参考公式:

P(K2k0)

0.10

0.05

0.025

0.010

k0

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,五种颜色可以反复使用,共有___________种不同的涂色方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣1)2+y2=r2(r>0)与直线l:y=x+3,且直线l有唯一的一个点P,使得过P点作圆C的两条切线互相垂直,则r=;设EF是直线l上的一条线段,若对于圆C上的任意一点Q,∠EQF≥ ,则|EF|的最小值=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2﹣a|x﹣1|+b(a>0,b>﹣1)
(1)若b=0,a>2,求f(x)在区间[0,2]内的最小值m(a);
(2)若f(x)在区间[0,2]内不同的零点恰有两个,且落在区间[0,1),(1,2]内各一个,求a﹣b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?”如图所示的是解决该问题的程序框图,执行该程序框图,若输出的(单位:升),则输入的值为( )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一袋中装有6个黑球,4个白球.如果不放回地依次取出2个球.求:

(1)第1次取到黑球的概率;

(2)第1次和第2次都取到黑球的概率;

(3)在第1次取到黑球的条件下,第2次又取到黑球的概率.

查看答案和解析>>

同步练习册答案