【题目】设f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≥ 对任意实数a≠0恒成立,求实数x的取值范围.
【答案】
(1)解:由f(x)≤x+2得:
或 或 ,
即有1≤x≤2或0≤x<1或x∈,
解得0≤x≤2,
所以f(x)≤x+2的解集为[0,2]
(2)解: =|1+ |﹣|2﹣ |≤|1+ +2﹣ |=3,
当且仅当(1+ )(2﹣ )≤0时,取等号.
由不等式f(x)≥ 对任意实数a≠0恒成立,
可得|x﹣1|+|x+1|≥3,即 或 或 ,
解得x≤﹣ 或x≥ ,
故实数x的取值范围是(﹣∞,﹣ ]∪[ ,+∞)
【解析】(1)运用绝对值的含义,对x讨论,分x≥1,﹣1<x<1,x≤﹣1,去掉绝对值,得到不等式组,解出它们,再求并集即可得到解集;(2)运用绝对值不等式的性质,可得不等式右边的最大值为3,再由不等式恒成立思想可得f(x)≥3,再由去绝对值的方法,即可解得x的范围.
【考点精析】解答此题的关键在于理解绝对值不等式的解法的相关知识,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)满足 ,当 时,f(x)=lnx,若在 上,方程f(x)=kx有三个不同的实根,则实数k的取值范围是( )
A.
B.[﹣4ln4,﹣ln4]
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是正方形,其他四个侧面都是等边三角形,与的交点为,为侧棱上一点.
(Ⅰ)求证:平面平面;
(Ⅱ)当二面角的大小为时,
试判断点在上的位置,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以在1,2,3,4,5,6点中任选一个,并押上赌注元,然后掷1颗骰子,连续掷3次,若你所押的点数在3次掷骰子过程中出现1次,2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收.
(1)求掷3次骰子,至少出现1次为5点的概率;
(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的焦点分别为 、 ,点P在椭圆C上,满足|PF1|=7|PF2|,tan∠F1PF2=4 .
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点A(1,0),试探究是否存在直线l:y=kx+m与椭圆C交于D、E两点,且使得|AD|=|AE|?若存在,求出k的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,P是正四面体V-ABC的面VBC上一点,点P到平面ABC距离与到点V的距离相等,则动点P的轨迹是( )
A. 直线 B. 抛物线
C. 离心率为的椭圆 D. 离心率为3的双曲线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解学生的课外阅读时间情况,某学校随机抽取了50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如下表所示:
阅读时间 | [0,20) | [20,40) | [40,60) | [60,80) | [80,100) | [100,120] |
人数 | 8 | 10 | 12 | 11 | 7 | 2 |
若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条形图.
(1)根据抽样结果估计该校学生的每天平均阅读时间(同一组数据用该区间的中点值作为代表);
(2)根据已知条件完成下面的2×2列联表,并判断是否有99%的把握认为“阅读达人”跟性别有关?
男生 | 女生 | 总计 | |
阅读达人 | |||
非阅读达人 | |||
总计 |
附:参考公式,其中n=a+b+c+d.
临界值表:
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b,c分别是△ABC内角A,B,C的对边,且 csinA=acosC.
(I)求C的值;
(Ⅱ)若c=2a,b=2 ,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A1 , A2 , A3 , …,An是集合{1,2,3,…,n}的n个非空子集(n≥2),定义aij= ,其中i,j=1,2,…,n,这样得到的n2个数之和记为S(A1 , A2 , A3 , …,An),简记为S,下列三种说法:①S与n的奇偶性相同;②S是n的倍数;③S的最小值为n,最大值为n2 . 其中正确的判断是( )
A.①②
B.①③
C.②③
D.③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com