【题目】一汽车厂生产三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表(单位:辆):
轿车 | 轿车 | 轿车 | |
舒适型 | 100 | 150 | |
标准型 | 300 | 450 | 600 |
按分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10辆.
(1)求的值;
(2)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分如下:4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.
科目:高中数学 来源: 题型:
【题目】某工厂的检验员为了检测生产线上生产零件的情况,从产品中随机抽取了个进行测量,根据所测量的数据画出频率分布直方图如下:
如果:尺寸数据在内的零件为合格品,频率作为概率.
(1)从产品中随机抽取件,合格品的个数为,求的分布列与期望:
(2)为了提高产品合格率,现提出,两种不同的改进方案进行试验,若按方案进行试验后,随机抽取件产品,不合格个数的期望是:若按方案试验后,抽取件产品,不合格个数的期望是,你会选择哪个改进方案?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为10元,被随机分配为1元,2.5元,3元,3.5元,共4份,供甲、乙等4人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于6元的概率是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中,底面是菱形,,与交于点,底面,为的中点,.
(1)求证: 平面;
(2)求异面直线与所成角的余弦值;
(3)求与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于不同的直线与不同的平面,有下列六个命题:
①若则;
②若则;
③若且则;
④若且则;
⑤若且则;
⑥若且则;
其中正确命题的序号是__________;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的离心率为,设直线过椭圆的上顶点和右顶点,坐标原点到直线的距离为.
(1)求椭圆的方程.
(2)过点且斜率不为零的直线交椭圆于,两点,在轴的正半轴上是否存在定点,使得直线,的斜率之积为非零的常数?若存在,求出定点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com