分析 (1)由函数的图象的顶点坐标求出b和A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
(2)由条件利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.
解答 解:(1)∵函数f(x)=Acos(ωx+φ)+b(A>0,ω>0,|φ|<$\frac{π}{2}$)
在同一个周期内的图象上有一个最大值点A($\frac{π}{6}$,3)和一个最小值点B($\frac{2π}{3}$,-5),
可得b=$\frac{3-5}{2}$=-1,a=3-(-1)=4,$\frac{1}{2}$•$\frac{2π}{ω}$=$\frac{2π}{3}$-$\frac{π}{6}$,求得ω=2.
再根据五点法作图可得2•$\frac{π}{6}$+φ=$\frac{π}{2}$,求得φ=$\frac{π}{6}$,
∴f(x)=4cos(2x+$\frac{π}{6}$)-1.
(2)将f(x)的图象向上平移一个单位可得y=4cos(2x+$\frac{π}{6}$)的图象;
再把纵坐标变为原来的$\frac{1}{4}$倍,可得y=cos(2x+$\frac{π}{6}$)的图象;
再把图象向右平移$\frac{π}{12}$个单位,可得y=cos[2(x-$\frac{π}{12}$)+$\frac{π}{6}$]=cos2x的图象;
再把所得图象上点的横坐标变为原来的2倍,可得g(x)=cosx的图象.
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出b和A,由周期求出ω,由五点法作图求出φ的值;函数y=Asin(ωx+φ)的图象变换规律,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{2}{3}$) | B. | ($\frac{2}{3}$,$\frac{4}{3}$) | C. | (0,$\frac{4}{3}$) | D. | ($\frac{4}{3}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com