精英家教网 > 高中数学 > 题目详情
14.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1、F2,若以F1F2为直径的圆与椭圆有交点,则椭圆离心率e的取值范围为(  )
A.[$\frac{1}{2}$,1)B.[$\frac{{\sqrt{2}}}{2}$,1)C.(0,$\frac{1}{2}$]D.(0,$\frac{{\sqrt{2}}}{2}}$]

分析 通过联立圆与椭圆方程,利用根的判别式为非负数,计算即得结论.

解答 解:由题可知以F1F2为直径的圆的方程为:x2+y2=c2
将其代入椭圆方程,消去y可得:(a2-b2)x2+a2b2-a2c2=0,
∵圆与椭圆有交点,
∴△=0-4(a2-b2)(a2b2-a2c2)≥0,
∴c2•a2•(a2-2c2)≤0,
∴a2≤2c2,即e=$\sqrt{\frac{{c}^{2}}{{a}^{2}}}$≥$\frac{\sqrt{2}}{2}$,
又椭圆斜率e<1,∴$\frac{\sqrt{2}}{2}$≤e<1,
故选:B.

点评 本题考查圆与圆锥曲线的位置关系,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.求函数y=tan(x-$\frac{π}{4}$)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.做一个圆柱形锅炉,容积为V,两个底面的材料每单位面积的价格为a元,侧面的材料每单位面积的价格为b元,当造价最低时,锅炉的高与底面直径的比为(  )
A.$\frac{a}{b}$B.$\frac{{a}^{2}}{b}$C.$\frac{b}{a}$D.$\frac{{b}^{2}}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{2x+3}{3x}$,数列{an}满足a1=1,an+1=f(${\frac{1}{a_n}}$),n∈N*
(1)求数列{an}的通项公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,求满足Tn≤-60的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.f(x)=ax3-x2+$\frac{1}{3}$x+1在(-∞,+∞)上恒为单调递增函数,则实数a的取值范围[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的顶点为A1,A2,B1B2,焦点为F1,F2,a2+b2=7
S${\;}_{?{A}_{1}{B}_{1}{A}_{2}{B}_{2}}$=2S${\;}_{?{B}_{1}{F}_{1}{B}_{2}{F}_{2}}$
(1)求椭圆C的方程;
(2)设直线m过P(1,1),且与椭圆相交于A,B两点,当P是A,B的中点时,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,左右焦点分别为F1,F2,点P的坐标为(2,$\sqrt{3}$),点F2在线段PF1的垂直平分线上.
(1)求椭圆E的方程;
(2)设l1,l2是过点G($\frac{3}{2}$,0)且互相垂直的两条直线,l1交E于A,B两点,l2交E于C,D两点,求l1的斜率k的取值范围;
(3)在(2)的条件下,设AB,CD的中点分别为M,N.证明:直线MN恒过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从编号001,002,…,500个产品中用系统抽样的方法抽取一个样本,已知样本编号从小到大依次为007,032,…,则样本中最大的编号应该为(  )
A.483B.482C.481D.480

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二次函数f(x)=ax2+bx+c.
(1)若f(-1)=0,f(0)=0,求出函数f(x)的零点;
(2)若f(x)同时满足下列条件:①当x=-1时,函数f(x)有最小值0,②f(1)=1求函数f(x)的解析式;
(3)若f(1)≠f(3),证明方程f(x)=$\frac{1}{2}$[f(1)+f(3)]必有一个实数根属于区间(1,3)

查看答案和解析>>

同步练习册答案