精英家教网 > 高中数学 > 题目详情
20.已知集合A={x∈Z|-1≤x≤2},集合B={y|y=sin$\frac{πx}{2}$},则A∩B=(  )
A.{-1,0,1}B.{0,1,2}C.{-1,0,1,2}D.

分析 求出集合B,然后求解交集即可.

解答 解:集合A={x∈Z|-1≤x≤2}={-1,0,1,2},集合B={y|y=sin$\frac{πx}{2}$}={y|-1≤y≤1},
则A∩B={-1,0,1}.
故选:A.

点评 本题考查集合的基本运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.在△ABC中,若|AB|=1,|AC|=$\sqrt{3}$,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,则其形状为③,$\frac{{\overrightarrow{BA}•\overrightarrow{BC}}}{{|{\overrightarrow{BC}}|}}$=$\frac{1}{2}$(①锐角三角形 ②钝角三角形  ③直角三角形,在横线上填上序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=xlnx-a,g(x)=(a+1)x,a∈R,e为自然对数的底数
(Ⅰ)若曲线f(x)在点(e,f(e))处的切线与直线g(x)垂直,求实数a的值;
(Ⅱ)设G(x)=f(x)+g(x),若G(x)>0对任意x∈(1,+∞)恒成立,求整数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x),g(x)分别为定义在R上的奇函数和偶函数且满足f(x)+g(x)=x3-x2+1,则f(1)=(  )
A.-lB.lC.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知z是复数,i是虚数单位,若zi=1+i,则z=(  )
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=ex+x(x∈R)可表示为奇函数h(x)与偶函数g(x)的和,则g(0)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在边长为4的正方形ABCD中,E、F分别是BC、CD的中点,M、N分别是AB、CF的中点,将该正方形沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥,如图所示.
(1)证明:MN∥平面AEF;
(2)证明:AB⊥平面BEF;
(3)求四棱锥E-AFNM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设p:2x2-3x+1≤0,q:x2-(2a+1)x+a(a+1)≤0,若¬q是¬p的充分不必要条件,则实数a的取值范围为0$≤a≤\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=$\sqrt{5}$,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC、AD于点E、F.
(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试说明在旋转过程中,线段AF与EC总保持相等,在旋转过程中,四边形BEDF可能是菱形吗,如果不可能,请说明理由,如果可能,画出图形并写出此时AC绕点O顺时针旋转的度数.

查看答案和解析>>

同步练习册答案