7£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=4£¬a2=2£¬an+2=$\frac{3+£¨-1£©^{n}}{2}$an+2[1-£¨-1£©n]£¬n¡ÊN*£¬k¡ÊN*£®
£¨¢ñ£©Çóa3£¬a4£¬²¢Ö±½Óд³öan£»
£¨¢ò£©ÉèSk=a1+a3+¡­+a2k-1£¬Tk=a2+a4+¡­+a2k£¬·Ö±ðÇóSk£¬Tk¹ØÓÚkµÄ±í´ïʽ£»
£¨¢ó£©ÉèWk=$\frac{{2{S_k}}}{{2+{T_k}}}$£¬ÇóʹWk£¾2µÄËùÓÐkµÄÖµ£¬²¢ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©¸ù¾ÝÊýÁеĵÝÍÆ¹ØÏµ¼´¿ÉÇóa3£¬a4£¬²¢Ö±½Óд³öan£»
£¨¢ò£©¸ù¾ÝÊýÁÐÇóºÍµÄ¹ØÏµ½øÐÐÇó½â¼´¿ÉÇóSk£¬Tk¹ØÓÚkµÄ±í´ïʽ£»
£¨¢ó£©Çó³öWkµÄ±í´ïʽ£¬½â²»µÈʽ¼´¿É£®

½â´ð ½â£º£¨I£©ÒòΪa1=4£¬a2=2£¬ËùÒÔa3=a1+4=8£¬..¡­£¨1·Ö£©a4=2a2=4£¬..¡­£¨2·Ö£©
${a_n}=\left\{\begin{array}{l}2£¨n+1£©£¬n=2k-1£¨k¡Ê{N^*}£©\\{2^{\frac{n}{2}}}£¬n=2k£¨k¡Ê{N^*}£©\end{array}\right.$¡­£¨4·Ö£©
£¨II£©µ±n=2k-1£¨k¡ÊN*£©Ê±£¬a2k+1=a2k-1+4£¬
ËùÒÔ{a2k-1}ÊÇÒÔ4ΪÊ×Ï4Ϊ¹«²îµÄµÈ²îÊýÁУ¬Ôòa2k-1=4k£¬..¡­£¨6·Ö£©
µ±n=2k£¨k¡ÊN*£©Ê±£¬a2k+2=2a2k£¬
¹Ê{a2k}ÊÇÒÔ2ΪÊ×Ï2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬Ôò${a_{2k}}={2^k}$£¬..¡­£¨8·Ö£©
Sk=a1+a3+¡­+a2k-1=4+8+¡­+4k=2k£¨k+1£©£¬
${T_k}={a_2}+{a_4}+¡­+{a_{2k}}=2+{2^2}+¡­+{2^k}={2^{k+1}}-2$£¬..¡­£¨9·Ö£©
£¨III£©${W_k}=\frac{{2{S_k}}}{{2+{T_k}}}=\frac{4k£¨k+1£©}{{{2^{k+1}}}}=\frac{k£¨k+1£©}{{{2^{k-1}}}}$£¬
ÓÚÊÇ${W_1}=2£¬{W_2}=3£¬{W_3}=3£¬{W_4}=\frac{5}{2}£¬{W_5}=\frac{15}{8}$£¬¡­£¨10·Ö£©
ÏÂÃæÖ¤Ã÷£ºµ±k¡Ý5ʱ£¬Wk£¼2£®
ÊÂʵÉÏ£¬µ±k¡Ý5ʱ£¬${W_{k+1}}-{W_k}=\frac{£¨k+2£©£¨k+1£©}{2^k}-$$\frac{k£¨k+1£©}{{{2^{k-1}}}}=\frac{£¨k+1£©£¨2-k£©}{2^k}£¼0$£¬
¼´Wk+1£¼Wk£¬ÓÖW5£¼2£¬
ËùÒÔk¡Ý5ʱ£¬Wk£¼2¡­£¨12·Ö£©
¹ÊÂú×ãWk£¾2µÄkµÄֵΪ2£¬3£¬4

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÊýÁеÝÍÆ¹«Ê½µÄÓ¦Ó㬿¼²éѧÉúµÄÔËËãºÍÍÆÀíÄÜÁ¦£¬×ÛºÏÐÔ½ÏÇ¿£¬ÄѶȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®º¯Êýy=2cos£¨$\frac{¦Ð}{3}$-$\frac{1}{2}$x£©£¬Ôò¸Ãº¯ÊýµÄ×îСÕýÖÜÆÚΪ4¦Ð£¬¶Ô³ÆÖá·½³ÌΪx=$\frac{2¦Ð}{3}$+2k¦Ð£¬k¡ÊZ£¬µ¥µ÷µÝÔöÇø¼äÊÇ[4k¦Ð-$\frac{4¦Ð}{3}$£¬4k¦Ð+$\frac{2¦Ð}{3}$]£¬k¡ÊZ£¬£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖª?ABCDµÄÁ½¸ö¶¥µã×ø±ê·Ö±ðΪA£¨4£¬2£©£¬B£¨5£¬7£©£¬¶Ô½ÇÏß½»µãΪE£¨-3£¬4£©£¬ÇóÁíÍâÁ½¸ö¶¥µãC¡¢DµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÇÒa2+b2=ab+c2£®
£¨¢ñ£©Çó½ÇCµÄÖµ£»
£¨¢ò£©Èô$c=\sqrt{3}$£¬ÇóS¡÷ABCµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®¶þÏîʽ£¨x+y£©6µÄÕ¹¿ªÊ½ÖУ¬º¬x4y2µÄÏîµÄϵÊýÊÇ15£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Å×ÎïÏßy=$\frac{1}{8}$x2Éϵ½½¹µãµÄ¾àÀëµÈÓÚ10µÄµãµÄ×ø±êΪ£¨¡¡¡¡£©
A£®£¨-8£¬8£©B£®£¨8£¬8£©C£®£¨-8£¬-8£©»ò£¨8£¬-8£©D£®£¨-8£¬8£©»ò£¨8£¬8£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªf£¨x£©=sin£¨2x+$\frac{¦Ð}{3}$£©
£¨1£©Çóf£¨-$\frac{¦Ð}{2}$£©µÄÖµ£®
£¨2£©Èô¦ÈΪÈñ½Ç£¬f£¨2¦È£©+f£¨-2¦È£©=$\frac{\sqrt{3}}{3}$£¬Çótan¦ÈµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®¼¯ºÏA={0£¬2}£¬B={1£¬a2}£¬ÈôA¡ÈB={0£¬1£¬2£¬4}£¬ÔòʵÊýaµÄֵΪ£¨¡¡¡¡£©
A£®2B£®-2C£®¡À2D£®¡À$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®PÊÇÕýÁù±ßÐÎABCDEFijһ±ßÉÏÒ»µã£¬$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AF}$£¬Ôòx+yµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®4B£®5C£®6D£®7

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸