精英家教网 > 高中数学 > 题目详情
19.已知f(x)=sin(2x+$\frac{π}{3}$)
(1)求f(-$\frac{π}{2}$)的值.
(2)若θ为锐角,f(2θ)+f(-2θ)=$\frac{\sqrt{3}}{3}$,求tanθ的值.

分析 (1)由条件利用诱导公式求得f(-$\frac{π}{2}$)的值.
(2)由条件利用两角和差的正弦公式求得 cos4θ 的值,可得cos2θ的值,再利用同角三角函数的基本关系求得tanθ的值.

解答 解:(1)f(-$\frac{π}{2}$)=sin(-π+$\frac{π}{3}$)=sin(-$\frac{2π}{3}$)=-sin$\frac{π}{3}$=-$\frac{\sqrt{3}}{2}$.
(2)∵θ为锐角,f(2θ)+f(-2θ)=sin(4θ+$\frac{π}{3}$)+sin(-4θ+$\frac{π}{3}$)
=sin4θcos$\frac{π}{3}$+cos4θsin$\frac{π}{3}$-sin4θcos$\frac{π}{3}$+cos4θsin$\frac{π}{3}$=2cos4θsin$\frac{π}{3}$=$\sqrt{3}$cos4θ=$\frac{\sqrt{3}}{3}$,
∴cos4θ=$\frac{1}{3}$.
由于4θ∈(0,2π),故4θ∈(0,$\frac{π}{2}$),或4θ∈($\frac{3π}{2}$,2π).
若4θ∈(0,$\frac{π}{2}$),cos4θ=$\frac{1}{3}$=2cos22θ-1,∴cos2θ=$\frac{\sqrt{6}}{3}$=$\frac{{cos}^{2}θ{-sin}^{2}θ}{{cos}^{2}θ{+sin}^{2}θ}$=$\frac{1{-tan}^{2}θ}{1{+tan}^{2}θ}$,
∴tan2θ=$\frac{3-\sqrt{6}}{3+\sqrt{6}}$=5-2$\sqrt{6}$,∴tanθ=$\sqrt{3}$-$\sqrt{2}$.
若4θ∈($\frac{3π}{2}$,2π),cos4θ=$\frac{1}{3}$=2cos22θ-1,∴cos2θ=-$\frac{\sqrt{6}}{3}$=$\frac{{cos}^{2}θ{-sin}^{2}θ}{{cos}^{2}θ{+sin}^{2}θ}$=$\frac{1{-tan}^{2}θ}{1{+tan}^{2}θ}$,
∴tan2θ=$\frac{3+\sqrt{6}}{3-\sqrt{6}}$=5+2$\sqrt{6}$,∴tanθ=$\sqrt{3}$+$\sqrt{2}$.

点评 本题主要考查同角三角函数的基本关系,诱导公式,两角和差的正弦公式,体现了分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.定于在R上的函数f(x)满足f(x+2)=2f(x),当x∈(0,2]时,f(x)=$\left\{\begin{array}{l}{{x}^{2}-x,x∈(0,1]}\\{-lo{g}_{2}x,x∈(1,2]}\end{array}\right.$,若x∈(-2,0]时,f(x)≤k有解,则实数k的取值范围(  )
A.[-1,+∞)B.[-$\frac{1}{2},+∞$)C.[-$\frac{1}{2},-\frac{1}{8}$]D.[-$\frac{1}{8},+∞$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,若输出的y=$\frac{1}{2}$,则输入的x的值可能为(  )
A.-1B.0C.1D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足a1=4,a2=2,an+2=$\frac{3+(-1)^{n}}{2}$an+2[1-(-1)n],n∈N*,k∈N*
(Ⅰ)求a3,a4,并直接写出an
(Ⅱ)设Sk=a1+a3+…+a2k-1,Tk=a2+a4+…+a2k,分别求Sk,Tk关于k的表达式;
(Ⅲ)设Wk=$\frac{{2{S_k}}}{{2+{T_k}}}$,求使Wk>2的所有k的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若x(xlnx)′=lnx+1,a=${∫}_{1}^{e}$lnxdx,a100+2C${\;}_{100}^{1}$a99+22C${\;}_{100}^{2}$a98+…+299C${\;}_{100}^{1}$a+2100被10除得的余数为(  )
A.3B.1C.9D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是一个算法的流程图,则输出S的值是(  )
A.2012B.2013C.2014D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.三个正数成等比数列,它们的和等于21,倒数的和等于$\frac{7}{12}$,求这三个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线x+y-a=0与圆x2+y2=2交于A、B两点,O是坐标原点,向量$\overrightarrow{OA}$、$\overrightarrow{OB}$满足条件|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|,则实数a的值为(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.±$\sqrt{2}$D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某高二学生练习篮球,每次投篮命中率约30%,现采用随机模拟的方法估计该生投篮命中的概率;先用计算器产生0到9之间的整数值的随机数,指定0,1,2表示命中,4,5,6,7,8,9表示不命中;再以每三个随机数为一组,代表3次投篮的结果.经随机模拟产生了如下随机数:
807 956 191 925 271 932 813 458 569 683
431 257 393 027 556 488 730 113 527 989
据此估计该生3次投篮恰有2次命中的概率约为(  )
A.0.15B.0.25C.0.2D.0.18

查看答案和解析>>

同步练习册答案