精英家教网 > 高中数学 > 题目详情
9.某高二学生练习篮球,每次投篮命中率约30%,现采用随机模拟的方法估计该生投篮命中的概率;先用计算器产生0到9之间的整数值的随机数,指定0,1,2表示命中,4,5,6,7,8,9表示不命中;再以每三个随机数为一组,代表3次投篮的结果.经随机模拟产生了如下随机数:
807 956 191 925 271 932 813 458 569 683
431 257 393 027 556 488 730 113 527 989
据此估计该生3次投篮恰有2次命中的概率约为(  )
A.0.15B.0.25C.0.2D.0.18

分析 由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三次投篮恰有两次命中的有4组随机数,根据概率公式,得到结果.

解答 解:由已知可得:
产生的随机数共有20组,
其中表示3次投篮恰有2次的有:
191,271,027,113,共4组,
所以估计概率为$\frac{4}{20}=0.2$.
故选C.

点评 本题考查模拟方法估计概率,是一个基础题,解这种题目的主要依据是等可能事件的概率,注意列举法在本题的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知f(x)=sin(2x+$\frac{π}{3}$)
(1)求f(-$\frac{π}{2}$)的值.
(2)若θ为锐角,f(2θ)+f(-2θ)=$\frac{\sqrt{3}}{3}$,求tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设x,y满足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x-y+m+≤0}\\{x-2y+2≥0}\end{array}\right.$,则z=2x-y的最大值为3,则m=$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.P是正六边形ABCDEF某一边上一点,$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AF}$,则x+y的最大值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在数列{an}中,a1=3,an+1=$\frac{{3}^{n+1}{a}_{n}}{{a}_{n}+{3}^{n}}$
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{a}_{n}}$,数列{bn}的前n项和为Tn,若a>Tn对任意n∈N+恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图所示的程序框图中,若函数F(x)=f(x)-m(0<m<2)总有四个零点,则a的取值范围是a≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为120(结果用数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知焦点在y轴上的椭圆C1:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)经过点Q($\frac{\sqrt{3}}{2}$,1),过椭圆的一个焦点且垂直长轴的弦长为1.
(1)求椭圆C1的方程;
(2)过抛物线C2:y=x2+h(h∈R)上一点P的切线与椭圆C1交于不同两点M,N.点A为椭圆C1的右顶点,记线段MN与PA的中点分别为G,H点,当直线CH与x轴垂直时,求h的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,内角A,B,C的对边分别是a,b,c,若$\frac{a}{b}=\frac{b+\sqrt{3}c}{a}$,sinC=2$\sqrt{3}$sinB,则tanA$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案