精英家教网 > 高中数学 > 题目详情
9.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示,则f($\frac{2π}{9}$)=(  )
A.$\sqrt{3}$B.1C.$\sqrt{2}$D.2

分析 由周期求出ω,由五点法作图求出φ的值,把点(0,1)代入求得A,可得f(x)的解析式,从而求得则f($\frac{2π}{9}$)的值.

解答 解:由函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象,
可得 $\frac{π}{ω}$=$\frac{11π}{18}$-$\frac{5π}{18}$,∴ω=3.
再根据五点法作图可得3•$\frac{5π}{18}$+φ=π,求得φ=$\frac{π}{6}$.
再把点(0,1)代入,可得Asin$\frac{π}{6}$=1,∴A=2,∴f(x)=2sin(3x+$\frac{π}{6}$).
∴则f($\frac{2π}{9}$)=2sin($\frac{2π}{3}$+$\frac{π}{6}$)=1,
故选:B.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,把点(0,1)代入求得A,求函数的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.$\frac{sin160°}{sin110°}$-tan320°+$\sqrt{3}$tan20°tan40°=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为64.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=(  )
A.{x|2<x<5}B.{x|x<4或x>5}C.{x|2<x<3}D.{x|x<2或x>5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数F(x)=ex-1,G(x)=ax2+bx,其中a,b∈R,e是自然对数的底数.
(Ⅰ)若a=0时,y=G(x)为曲线y=F(x)的切线,求b的值;
(Ⅱ)若f(x)=F(x)-G(x),f(1)=0.证明:当e-2<a<1时,函数f(x)在区间(0,1)内有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系中,定义两点A(xA,yA),B(xB,yB)间的“L-距离”为d(A-B)=|xA-xB|+|yA-yB|.现将边长为1的正三角形按如图所示方式放置,其中顶点A与坐标原点重合,记边AB所在的直线斜率为k(0≤k≤$\sqrt{3}$),则d(B-C)取得最大值时,边AB所在直线的斜率为2-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}的前n项和为Sn,已知a1=a,an+1=Sn+3n,n∈N*
(1)设bn=Sn-3n,求数列{bn}的通项公式;
(2)若an+1≥an,n∈N*,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知{an}是等差数列,Sn是其前n项和,若a1+a22=-3,S5=10,则a9的值是20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(Ⅰ)讨论函数f(x)=$\frac{x-2}{x+2}$ex的单调性,并证明当x>0时,(x-2)ex+x+2>0;
(Ⅱ)证明:当a∈[0,1)时,函数g(x)=$\frac{{e}^{x}-ax-a}{{x}^{2}}$(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.

查看答案和解析>>

同步练习册答案