精英家教网 > 高中数学 > 题目详情
20.在△ABC中,角C=60°,且tan$\frac{A}{2}$+tan$\frac{B}{2}$=1,则sin$\frac{A}{2}$•sin$\frac{B}{2}$=$\frac{\sqrt{3}-1}{2}$.

分析 由已知及三角形内角和定理可求$\frac{A}{2}$+$\frac{B}{2}$=60°,由已知等式,利用同角三角函数基本关系式,两角和的正弦函数公式可求cos$\frac{A}{2}$•cos$\frac{B}{2}$=$\frac{\sqrt{3}}{2}$,利用两角和的余弦函数公式即可计算得解sin$\frac{A}{2}$•sin$\frac{B}{2}$的值.

解答 解:∵C=60°,可得:$\frac{A}{2}$+$\frac{B}{2}$=$\frac{1}{2}$(180°-C)=60°,
∵tan$\frac{A}{2}$+tan$\frac{B}{2}$=1,可得:$\frac{sin\frac{A}{2}}{cos\frac{A}{2}}$+$\frac{sin\frac{B}{2}}{cos\frac{B}{2}}$=$\frac{sin\frac{A}{2}cos\frac{B}{2}+sin\frac{B}{2}cos\frac{A}{2}}{cos\frac{A}{2}cos\frac{B}{2}}$=$\frac{sin(\frac{A}{2}+\frac{B}{2})}{cos\frac{A}{2}cos\frac{B}{2}}$=$\frac{\frac{\sqrt{3}}{2}}{cos\frac{A}{2}cos\frac{B}{2}}$=1,
可得:cos$\frac{A}{2}$•cos$\frac{B}{2}$=$\frac{\sqrt{3}}{2}$,
∴cos($\frac{A}{2}$+$\frac{B}{2}$)=cos60°=$\frac{1}{2}$=cos$\frac{A}{2}$•cos$\frac{B}{2}$-sin$\frac{A}{2}$•sin$\frac{B}{2}$=$\frac{\sqrt{3}}{2}$-sin$\frac{A}{2}$•sin$\frac{B}{2}$,
∴可得:sin$\frac{A}{2}$•sin$\frac{B}{2}$=$\frac{\sqrt{3}-1}{2}$.
故答案为:$\frac{\sqrt{3}-1}{2}$.

点评 本题主要考查了三角形内角和定理,同角三角函数基本关系式,两角和的正弦函数公式,两角和的余弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.给出下列结论:动点M(x,y)分别到两定点(-4,0),(4,0)连线的斜率之积为-$\frac{9}{16}$,设M(x,y)的轨迹为曲线C,F1、F2分别曲线C的左、右焦点,则下列命题中:
(1)曲线C的焦点坐标为F1(-5,0)、F2(5,0);
(2)曲线C上存在一点M,使得S${\;}_{△{F}_{1}P{F}_{2}}$=9;
(3)P为曲线C上一点,P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,$\frac{|P{F}_{1}|}{|P{F}_{2}|}$的值为$\frac{23}{9}$;
(4)设A(1,1),动点P在曲线C上,则|PA|-|PF2|的最大值为$\sqrt{9-2\sqrt{7}}$;
其中正确命题的序号是(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知全集为R,集合M={-1,0,1,3},N={x|x2-x-2≥0},则M∩∁RN=(  )
A.{-1,0,1,3}B.{0,1,3}C.{-1,0,1}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a>0,且a≠1,则双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-y2=1与双曲线C2:$\frac{{y}^{2}}{{a}^{2}}$-x2=1的(  )
A.焦点相同B.顶点相同C.渐近线相同D.离心率相等

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数f(x)的表达式为f(x)=$\frac{ax+b}{cx+d}$ (c≠0),则函数f(x)的图象的对称中心为(-$\frac{d}{c}$,$\frac{a}{c}$),现已知函数f(x)=$\frac{2-2x}{2x-1}$,数列{an}的通项公式为an=f($\frac{n}{2017}$)(n∈N),则此数列前2017项的和为-2016.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f'(x)是函数f(x)在定义域R上的导函数,若f(0)=1且f'(x)-2f(x)=0,则不等式f(ln(x2-x))<4的解集为(-1,0)∪(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=sinx+cosx的图象向右平移t(t>0)个单位长度后所得函数为偶函数,则t的最小值为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30)(  )
A.2017年B.2018年C.2019年D.2020年

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知单位向量$\overrightarrow{e_1},\overrightarrow{e_2}$的夹角为$\frac{π}{3}$,$\overrightarrow a=2\overrightarrow{e{\;}_1}-\overrightarrow{e_2}$,则$\overrightarrow a$在$\overrightarrow{e_1}$上的投影是$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案