【题目】,是两个平面,m,n是两条直线,有下列四个命题;
①如果,,,那么.
②如果,,那么.
③如果,,那么.
④如果,,那么m与所成的角和n与所成的角相等.
其中正确的命题的个数为( )
A.1B.2C.3D.4
【答案】C
【解析】
对①,运用长方体模型,找出符合条件的直线和平面,即可判断;
对②,运用线面平行的性质定理和线面垂直的性质定理,即可判断;
对③,运用面面平行的性质定理,即可判断;
对④,由平行的传递性及线面角的定义,即可判断④.
对于命题①,可运用长方体举反例证明其错误:如图,
不妨设为直线m,为直线n,所在的平面为,所在的平面为,显然这些直线和平面满足题目条件,但不成立;
命题②正确,证明如下:设过直线n的某平面与平面相交于直线l,则,由知,从而,结论正确;
由平面与平面平行的定义知命题如果,,那么.③正确;
由平行的传递性及线面角的定义知命题:如果,,那么m与所成的角和n与所成的角相等,④正确.
故选:C.
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样
B.某地气象局预报:5月9日本地降水概率为,结果这天没下雨,这表明天气预报并不科学
C.在回归分析模型中,残差平方和越小,说明模型的拟合效果越好
D.在回归直线方程中,当解释变量每增加1个单位时,预报变量增加0.1个单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的方程为,其焦点为,为过焦点的抛物线的弦,过分别作抛物线的切线,,设,相交于点.
(1)求的值;
(2)如果圆的方程为,且点在圆内部,设直线与相交于,两点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地某所高中2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考升学情况,得到如图所示:则下列结论正确的( )
A.与2016年相比,2019年一本达线人数有所减少
B.与2016年相比,2019年二本达线人数增加了1倍
C.与2016年相比,2019年艺体达线人数相同
D.与2016年相比,2019年不上线的人数有所增加
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年4月,甲乙两校的学生参加了某考试机构举行的大联考,现对这两校参加考试的学生的数学成绩进行统计分析,数据统计显示,考生的数学成绩服从正态分布,从甲乙两校100分及以上的试卷中用系统抽样的方法各抽取了20份试卷,并将这40份试卷的得分制作成如图所示的茎叶图:
(1)试通过茎叶图比较这40份试卷的两校学生数学成绩的中位数;
(2)若把数学成绩不低于135分的记作数学成绩优秀,根据茎叶图中的数据,判断是否有的把握认为数学成绩在100分及以上的学生中数学成绩是否优秀与所在学校有关?
(3)从所有参加此次联考的学生中(人数很多)任意抽取3人,记数学成绩在134分以上的人数为,求的数学期望.
附:若随机变量服从正态分布,则,,.
参考公式与临界值表:,其中.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一酒企为扩大生产规模,决定新建一个底面为长方形的室内发酵馆,发酵馆内有一个无盖长方体发酵池,其底面为长方形(如图所示),其中.结合现有的生产规模,设定修建的发酵池容积为450米,深2米.若池底和池壁每平方米的造价分别为200元和150元,发酵池造价总费用不超过65400元
(1)求发酵池边长的范围;
(2)在建发酵馆时,发酵池的四周要分别留出两条宽为4米和米的走道(为常数).问:发酵池的边长如何设计,可使得发酵馆占地面积最小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果一个实数数列满足条件:(为常数,,则这一数列为“伪等差数列”,称“伪公差”.给出下列关于某个伪等差数列的结论:其中正确的结论是__________________.
①对于任意的首项,若,则这一数列必为有穷数列;
②当时,这一数列必为单调递増数列;
③这一数列可以是周期数列;
④若这一数列的首项为1,伪公差为3,可以是这一数列中的一项.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com