【题目】如果一个实数数列
满足条件:
(
为常数,
,则这一数列为“伪等差数列”,
称“伪公差”.给出下列关于某个伪等差数列
的结论:其中正确的结论是__________________.
①对于任意的首项
,若
,则这一数列必为有穷数列;
②当
时,这一数列必为单调递増数列;
③这一数列可以是周期数列;
④若这一数列的首项为1,伪公差为3,
可以是这一数列中的一项.
科目:高中数学 来源: 题型:
【题目】
,
是两个平面,m,n是两条直线,有下列四个命题;
①如果
,
,
,那么
.
②如果
,
,那么
.
③如果
,
,那么
.
④如果
,
,那么m与
所成的角和n与
所成的角相等.
其中正确的命题的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆
与圆
:
相切,且与圆
:
相内切,记圆心
的轨迹为曲线
.设
为曲线
上的一个不在
轴上的动点,
为坐标原点,过点
作
的平行线交曲线
于
,
两个不同的点.
(Ⅰ)求曲线
的方程;
(Ⅱ)试探究
和
的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(Ⅲ)记
的面积为
,
的面积为
,令
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“绿水青山就是金山银山”的理念越来越深入人心,据此,某网站调查了人们对生态文明建设的关注情况,调查数据表明,参与调查的人员中关注生态文明建设的约占80%.现从参与调查的关注生态文明建设的人员中随机选出200人,并将这200人按年龄(单位:岁)分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65],得到的频率分布直方图如图所示.
![]()
(Ⅰ)求这200人的平均年龄(每一组用该组区间的中点值作为代表)和年龄的中位数(保留一位小数);
(Ⅱ)现在要从年龄在第1,2组的人员中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求抽取的3人中恰有2人的年龄在第2组中的概率;
(Ⅲ)若从所有参与调查的人(人数很多)中任意选出3人,设这3人中关注生态文明建设的人数为X,求随机变量X的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
,底面四边形
为直角梯形,
,
,
为线段
上一点.
![]()
(1)若
,则在线段
上是否存在点
,使得
平面
?若存在,请确定
点的位置;若不存在,请说明理由
(2)己知
,若异面直线
与
成
角,二而角
的余弦值为
,求
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知常数
,数列
的前
项和为
,
,
;
(1)求数列
的通项公式;
(2)若
,且
是单调递增数列,求实数
的取值范围;
(3)若
,
,对于任意给定的正整数
,是否存在正整数
、
,使得
?若存在,求出
、
的值(只要写出一组即可);若不存在,请说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为
,过点
的直线l的参数方程为
(为参数),直线l与曲线C交于M、N两点。
(1)写出直线l的普通方程和曲线C的直角坐标方程:
(2)若
成等比数列,求a的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在我们的教材必修一中有这样一个问题,假设你有一笔资金,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报
元;
方案二:第一天回报
元,以后每天比前一天多回报
元;
方案三:第一天回报
元,以后每天的回报比前一天翻一番.
记三种方案第
天的回报分别为
,
,
.
(1)根据数列的定义判断数列
,
,
的类型,并据此写出三个数列的通项公式;
(2)小王准备做一个为期十天的短期投资,他应该选择哪一种投资方案?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com