精英家教网 > 高中数学 > 题目详情

【题目】我们把离心率e= 的双曲线 =1(a>0,b>0)称为黄金双曲线.如图是双曲线 =1(a>0,b>0,c= )的图象,给出以下几个说法: ①若b2=ac,则该双曲线是黄金双曲线;
②若F1 , F2为左右焦点,A1 , A2为左右顶点,B1(0,b),B2(0,﹣b)且∠F1B1A2=90°,则该双曲线是黄金双曲线;
③若MN经过右焦点F2且MN⊥F1F2 , ∠MON=90°,则该双曲线是黄金双曲线.
其中正确命题的序号为

【答案】①②③
【解析】解:①b2=ac,则e= = = , ∴e2﹣e﹣1=0,解得e= ,或e= (舍),
∴该双曲线是黄金双曲线,故①正确;
②如图,F1 , F2为左右焦点,A1 , A2为左右顶点,
B1(0,b),B2(0,﹣b),且∠F1B1A2=90°,
∴B1F12+B1A22=A2F12 , 即b2+2c2=(a+c)2
整理,得b2=ac,由①知该双曲线是黄金双曲线,故②正确;
③如图,MN经过右焦点F2且MN⊥F1F2 , ∠MON=90°,
∴NF2=OF2 , ∴ =c,∴b2=ac,
由①知该双曲线是黄金双曲线,故③正确.
所以答案是:①②③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 =(sin(2x+ ),sinx), =(1,sinx),f(x)=
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=2 ,若 sin(A+C)=2cosC,求b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B两点分别在两条互相垂直的直线y=2x和x+ay=0上,且线段AB的中点为P(0, ),则直线AB的方程为( )
A.y=- x+5
B.y= x-5
C.y= x+5
D.y=- x-5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCD﹣A1B1C1D1中,如图E、F分别是BB1 , CD的中点,
(1)求证:D1F⊥AE;
(2)求直线EF与CB1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高二年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100]后得到如图的频率分布直方图.
(1)求图中实数a的值;
(2)若该校高二年级共有学生640人,试估计该校高二年级期中考试数学成绩不低于60分的人数;
(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1:(a-1)xyb=0,l2axby-4=0,求满足下列条件的ab的值.
(1)l1l2 , 且l1过点(1,1);
(2)l1l2 , 且l2在第一象限内与两坐标轴围成的三角形的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx在x=1处有极值,则 + 的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数f(x)=5sin3x+5 cos3x,下列说法正确的是(
A.函数f(x)关于x= π对称
B.函数f(x)向左平移 个单位后是奇函数
C.函数f(x)关于点( ,0)中心对称
D.函数f(x)在区间[0, ]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学餐饮中心为了了解新生的饮食习惯,利用简单随机抽样的方法在全校一年级学生中进行了抽样调查,调查结果如表所示:

喜欢甜品

不喜欢甜品

合计

南方学生

60

20

80

北方学生

10

10

20

合计

70

30

100


(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)根据(1)的结论,你能否提出更好的调查方法来了解该校大学新生的饮食习惯,说明理由.

查看答案和解析>>

同步练习册答案