精英家教网 > 高中数学 > 题目详情
7.在正三棱锥V-ABC内,有一半球,其底面与正三棱锥的底面重合,且与正正三棱锥的三个侧面都相切,若半球的半径为2,则正三棱锥的体积最小时,其高等于2$\sqrt{3}$.

分析 由于正三棱锥的侧面为全等的等腰三角形,故侧面与球的切点在棱锥的斜高上,利用等积法得出棱锥的高与棱锥底面边长的关系,得出棱锥的体积关于高h的函数V(h),利用导数与函数的最值得关系计算V(h)的极小值点.

解答 解:设△ABC的中心为O,取AB中点D,连结OD,VD,VO,
设OD=a,VO=h,则VD=$\sqrt{O{D}^{2}+O{V}^{2}}$=$\sqrt{{a}^{2}+{h}^{2}}$.
AB=2AD=2$\sqrt{3}a$.
过O作OE⊥VD,则OE=2,
∴S△VOD=$\frac{1}{2}OD•VO=\frac{1}{2}VD•OE$,
∴ah=2$\sqrt{{a}^{2}+{h}^{2}}$,整理得a2=$\frac{4{h}^{2}}{{h}^{2}-4}$(h>2).
∴V(h)=$\frac{1}{3}$S△ABC•h=$\frac{1}{3}×\frac{\sqrt{3}}{4}×(2\sqrt{3})^{2}$a2h=$\sqrt{3}$a2h=$\frac{4\sqrt{3}{h}^{3}}{{h}^{2}-4}$.
∴V′(h)=4$\sqrt{3}$×$\frac{3{h}^{2}({h}^{2}-4)-2{h}^{4}}{({h}^{2}-4)^{2}}$=4$\sqrt{3}$×$\frac{{h}^{4}-12{h}^{2}}{({h}^{2}-4)^{2}}$.
令V′(h)=0得h2-12=0,解得h=2$\sqrt{3}$.
当2<h$<2\sqrt{3}$时,V′(h)<0,当h$>2\sqrt{3}$时,V′(h)>0,
∴当h=2$\sqrt{3}$时,V(h)取得最小值.
故答案为2$\sqrt{3}$.

点评 本题考查了球与外切多面体的关系,棱锥的体积计算,导数与函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.二项式${({ax+\frac{{\sqrt{3}}}{6}})^6}$的展开式中x5的系数为$\sqrt{3}$,则$\int_0^a{x^2}dx$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在直角坐标系中,如果不同的两点A(a,b),B(-a,-b)都在函数y=f(x)的图象上,那么称[A,B]为函数f(x)的一组关于原点的中心对称点([A,B]与[B,A]看作同一组),函数g(x)=$\left\{\begin{array}{l}{sin\frac{π}{2}x,x≤0}\\{lo{g}_{2}(x+1),x>0}\end{array}\right.$,关于原点的中心对称点的组数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=|2x-1|+|2x-3|,x∈R.
(1)若函数f(x)=|2x-1|+|2x-3|的最小值,并求取的最小值时x的取值范围;
(2)若g(x)=$\frac{1}{f(x)+m}$的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=m(x-m)(x+m+3)在区间[1,+∞)上的值恒为负数,且在区间(-∞,-4)上存在x0使得f(x0)>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.班集体搞某项活动,将全班同学分成3个不同的小组,每位同学被分到每个小组的可能性相同,则甲、乙两位同学被分到同一个小组的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知O为原点,抛物线y=3-x2(y≥0)和平行于x轴的直线交于不同两点A、B,那么当△ABO的面积达到最大值时,A、B的坐标分别为(  )
A.(3,1)(-2,1)B.(0,1)(1,1)C.(1,0)(-1,0)D.(1,2)(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.
(1)求证:AB⊥C1F;
(2)求证:C1F∥平面ABE;
(3)求三棱锥E-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.有7位歌手(1至7号)参加一场歌唱比赛,由550名大众评委现场投票决定歌手名次,根据年龄将大众评委分为5组,各组的人数如下:
组别ABCDE
人数5010020015050
(Ⅰ) 为了调查大众评委对7位歌手的支持状况,现用分层抽样方法从各组中抽取若干评委,其中从B组中抽取了6人.请将其余各组抽取的人数填入表.
组别ABCDE
人数5010020015050
抽取人数6
(Ⅱ) 在(Ⅰ)中,若A,C两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.

查看答案和解析>>

同步练习册答案