精英家教网 > 高中数学 > 题目详情
2.已知f(x)=m(x-m)(x+m+3)在区间[1,+∞)上的值恒为负数,且在区间(-∞,-4)上存在x0使得f(x0)>0,求实数m的取值范围.

分析 根据二次函数的表达式和二次函数图象的性质可知函数图象开口向下,且一根小于-4和一根小于1,分类解决即可.

解答 解:在区间[1,+∞)上的值恒为负数,
开口方向应向下,
∴m<0,
函数的零点为2m,-m-3,
当2m>-m-3时,
只需2m<1,且-m-3<-4,
解得无解;
当2m<-m-3时,
只需2m<-4,且-m-3<1,
解得-4<m<-2.
故m的范围为-4<m<-2.

点评 考查了二次函数图象的性质和二次函数参数分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则函数f(x)解析式f(x)=2sin(2x-$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=x+\frac{1}{x}$,则函数y=f(x)的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图(1),在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图(2).
(1)求证:A1C⊥平面BCDE;
(2)平面α过直线CM和点B,试作出平面α与△A1BE的交线,并说明作法;
(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥S-ABCD中,已知底面ABCD为直角梯形,其中AD∥BC,∠BAD=90°,SA⊥底面ABCD,$SA=AB=BC=2,tan∠SDA=\frac{2}{3}$.
(1)求四棱锥S-ABCD的体积;
(2)在棱SD上找一点E,使CE∥平面SAB,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在正三棱锥V-ABC内,有一半球,其底面与正三棱锥的底面重合,且与正正三棱锥的三个侧面都相切,若半球的半径为2,则正三棱锥的体积最小时,其高等于2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧视图、俯视图,在直观图中,M是BD的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)若N是BC的中点,证明:AN∥平面CME;
(2)证明:平面BDE⊥平面BCD.
(3)求三棱锥D-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题p:?φ∈R,函数f(x)=sin(2x+φ)不是偶函数,则¬p为(  )
A.?φ∈R,函数f(x)=sin(2x+φ)是奇函数B.?φ∈R,函数f(x)=sin(2x+φ)不是偶函数
C.?φ∈R,函数f(x)=sin(2x+φ)是偶函数D.?φ∈R,函数f(x)=sin(2x+φ)是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知△ABC中,∠B=90°,AB=$\sqrt{3}$,BC=1.若把△ABC绕边AC旋转一周,则所得几何体的体积为$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案