| A. | 30° | B. | 60° | C. | 60°或120° | D. | 30°或150° |
分析 由已知A=90°,若$\overrightarrow{AB}$=(2,-1),$\overrightarrow{AC}$=(sinB,$\sqrt{3}$),利用向量的数量积得到关于sinB的等式可求.
解答 解:因为A=90°,$\overrightarrow{AB}$=(2,-1),$\overrightarrow{AC}$=(sinB,$\sqrt{3}$),所以cosA=0=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|}=\frac{2sinB-\sqrt{3}}{\sqrt{5}\sqrt{si{n}^{2}B+3}}$,解得sinB=$\frac{\sqrt{3}}{2}$,B<90°,
所以B=60°;
故选:B.
点评 本题考查了平,向量的数量积公式的运用,解答本题注意B的范围,容易误选C.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com