精英家教网 > 高中数学 > 题目详情
15.复数z=$\frac{2-i}{1+2i}$的虚部为(  )
A.1B.-1C.iD.-i

分析 直接由复数代数形式的乘除运算化简复数z,则复数z的虚部可求.

解答 解:由复数z=$\frac{2-i}{1+2i}$=$\frac{(2-i)(1-2i)}{(1+2i)(1-2i)}=\frac{-5i}{5}=-i$,
则复数z=$\frac{2-i}{1+2i}$的虚部为:-1.
故选:B.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知点P(x、y)满足
(1)若x∈{0,1,2,3,4,5},y∈{0,1,2,3,4},则求y≥x的概率.
(2)若x∈[0,5],y∈[0,4],则求x>y的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.双曲线x2-$\frac{{y}^{2}}{2}$=1的一个顶点到一条渐近线的距离是(  )
A.$\sqrt{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.
(1)求证:平面PDC⊥平面PAD;
(2)作出二面角E-AC-D的平面角并求出它的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知命题p:“方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{3-m}$=1表示的曲线是焦点在y轴上的椭圆”,
命题q:“函数f(x)=lg(x2-mx+$\frac{9}{16}$)的定义域为R”.
(1)若命题p为真命题,求实数m的取值范围;
(2)若p∧q是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.计算($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$-$\sqrt{(3-π)^{2}}$+lg25+lg2•lg50=(  )
A.5+lg7-πB.lg7-1+πC.6-πD.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数z=$\frac{-3+i}{2+i}$(i是虚数单位)的共轭复数的模是(  )
A.-1+iB.-1-iC.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合M={x|x<2016},N={x|y=lg(x-x2)},则下列关系中正确的是(  )
A.N∈MB.M∪N=RC.M∩N={x|0<x<1}D.M∩N=∅

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.直线x+2y+2=0在y轴上的截距为-1.

查看答案和解析>>

同步练习册答案