精英家教网 > 高中数学 > 题目详情
13.如图,A,B,C,D为矩形的四个顶点,AD=4cm,AB=dcm,动点E、F分别从点D、B出发,点E以1cm/s的速度沿边DA向点A移动,点F以1cm/s的速度沿边BC向点C移动,点F移动到点C,两点同时停止移动,以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为1cm2,已知y与x的函数图象是抛物线的一部分,如图2所示
(1)自变量x的取值范围是0≤x≤4;
(2)d=3m=2n=25;
(3)F出发多少秒时,正方形EFGH的面积为16cm2

分析 (1)根据矩形的对边相等求出BC的长,然后利用路程、速度、时间的关系求解即可;
(2)根据点的运动可知,当点E、F分别运动到AD、BC的中点时,正方形的面积最小,求出d、m的值,再根据开始于结束时正方形的面积最大,利用勾股定理求出BD的平方,即为最大值n;
(3)过点E作EI⊥BC垂足为点I,则四边形DEIC为矩形,然后表示出EI、IF,再利用勾股定理表示出EF2,根据正方形的面积得到y与x的函数关系式,然后把y=16代入求出x的值,即可得到时间

解答 解:(1)∵BC=AD=4,4÷1=4,
∴0≤x≤4;
(2)根据题意,当点E、F分别运动到AD、BC的中点时,
EF=AB最小,所以正方形EFGH的面积最小,
此时,d2=9,m=4÷2=2,
所以,d=3,
根据勾股定理,n=BD2=AD2+AB2=42+32=25,
(3)如图,过点E作EI⊥BC垂足为点I.则四边形DEIC为矩形,
∴EI=DC=3,CI=DE=x,
∵BF=x,
∴IF=4-2x,
在Rt△EFI中,EF2=EI2+IF2=32+(4-2x)2
∵y是以EF为边长的正方形EFGH的面积,
∴y=32+(4-2x)2
当y=16时,32+(4-2x)2=16,
整理得,4x2-16x+9=0,
解得,x1=$\frac{4+\sqrt{7}}{2}$,x2=$\frac{4-\sqrt{7}}{2}$,
∵点F的速度是1cm/s,
∴F出发$\frac{4+\sqrt{7}}{2}$或$\frac{4-\sqrt{7}}{2}$秒时,正方形EFGH的面积为16cm2
故答案为:(1)0≤x≤4;(2)3,2,25.

点评 本题考查了动点问题的函数图象,(2)根据点的移动,结合二次函数图象找出当EF=AB时正方形的面积为最小值是解题的关键,(3)求出正方形EFGH的面积的表达式是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若抛物线y2=2px(p>0)的准线与圆x2+y2-4x+2y-4=0相切,则p=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某四面体的三视图如图所示,且四个顶点都在一个球面上,则球面的表面积为(  )
A.$\frac{11π}{3}$B.C.D.$\frac{13π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列极限:
(1)$\underset{lim}{n→∞}\frac{3{n}^{2}+2}{2{n}^{2}-1}$
(2)$\underset{lim}{n→∞}\frac{3{n}^{2}+2}{2{n}^{3}-1}$
(3)$\underset{lim}{n→∞}(\sqrt{{n}^{2}+n}-n)$
(4)$\underset{lim}{n→∞}\frac{(-2)^{n}+{3}^{n}}{(-2)^{n+1}+{3}^{n+2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)满足ax•f(x)=b+f(x)(ab≠0),f(1)=2且f(x+2)=-f(2-x)对定义域中任意x都成立.
(1)求函数f(x)的解析式;
(2)若正项数列{an}的前n项和Sn,满足Sn=$\frac{1}{4}$(3-$\frac{2}{f({a}_{n})}$)2,求证:数列{an}为等差数列.
(3)在(2)的条件下,若bn=$\frac{{a}_{n}}{{2}^{n}}$,数列{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{$\frac{{a}_{n}}{{3}^{n-1}}$}的前n项和Sn=1-3n.
(1)求数列{an}的通项公式;
(2)令bn=n•an,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,若△ABC不是直角三角形,则下列命题正确的是①②④⑤(写出所有正确命题的编号)
①tanA•tanB•tanC=tanA+tanB+tanC;
②若tanA:tanB:tanC=1:2:3,则A=45°;
③tanA+tanB+tanC的最小值为3$\sqrt{3}$;
④当$\sqrt{3}$tanB-1=$\frac{tanB+tanC}{tanA}$时,则sin2C≥sinA•sinB;
⑤若[x]表示不超过x的最大整数,则满足tanA+tanB+tanC≤[tanA]+[tanB]+[tanC]的A,B,C仅有一组.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若(x2+$\frac{3}{x}$)n展开式中的二项式系数之和为64,则展开式的常数项为(  )
A.1215B.9C.27D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若cos(α+β)=$\frac{2}{7}$,cos(α-β)=$\frac{4}{7}$,则tanαtanβ=$\frac{1}{3}$..

查看答案和解析>>

同步练习册答案