| A. | $\frac{11π}{3}$ | B. | 5π | C. | 7π | D. | $\frac{13π}{3}$ |
分析 由三视图想象出空间几何体,进而求出几何体外接球的半径,代入球的表面积公式,可得答案.
解答 解:该几何体的底面是边长为1的正三角形,侧棱垂直于底面,长度为$\sqrt{3}$,
设球心到底面中心的距离为d,球的半径为r,则
∵正三角形的外接圆的半径为$\frac{\sqrt{3}}{3}$,
∴r2=($\frac{\sqrt{3}}{2}$)2+$\frac{1}{3}$=$\frac{13}{12}$,
∴球面的表面积为4πr2=$\frac{13}{3}π$.
故选:D.
点评 本题考查了学生的空间想象力,考查了由三视图得到直观图,其中几何体的形状判断是解答的关键,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n=12 | B. | n=24 | ||
| C. | n=36 | D. | n≠12且n≠24且n≠36 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 11 | B. | 5 | C. | -1 | D. | -3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com