精英家教网 > 高中数学 > 题目详情
设x,y满足约束条件
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
,若目标函数z=ax+by(a>0,b>0)的最大值为6,则
1
a
+
2
b
的最小值为(  )
A、1B、3C、2D、4
考点:简单线性规划
专题:不等式的解法及应用
分析:作出x、y满足约束条件 的图象,由图象判断同最优解,令目标函数值为6,解出a,b的方程,再由基本不等式求出
1
a
+
2
b
的最小值,代入求解即可
解答: 解:由题意、y满足约束条件
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
的图象如图:
目标函数z=ax+by(a>0,b>0)的最大值为6,
从图象上知,最优解是(2,4)
故有2a+4b=6
1
a
+
2
b

=
1
6
(2a+4b)(
1
a
+
2
b

=
1
6
(10+
4b
a
+
4a
b

1
6
×(10+2
4a
b
4b
a

=3,
等号当且仅当
4b
a
=
4a
b
时成立.
故选:B.
点评:本题考查简单线性规划的应用及不等式的应用,解决本题,关键是根据线性规划的知识判断出取最值时的位置,即最优解,由此得到参数的方程,再构造出积为定值的形式求出真数的最小值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设曲线y=
x+1
x-1
在点(3,2)处的切线与直线ax+y+3=0垂直,则a=(  )
A、-2
B、-
1
2
C、
1
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

若m∈N*,定义一种运算*,满足(m+1)*1=2(m*1),1*1=2,则8*1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求a的取值范围,使得关于x的方程x2+2(a-1)x+2a+6=0.
(1)有两个都大于1的实数根;
(2)至少有一个正实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx+acosx的图象的一条对称轴是x=
3
,则函数g(x)=asinx+cosx 的最大值是(  )
A、
4
3
B、
2
3
3
C、
2
2
3
D、
2
6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则该几何体的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设m,n∈N*,f(x)=(1+x)m+(1+x)n的展开式中,x的系数为19.则f(x)展开式中x2的系数的最大、小值分别为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图的程序框图,若输出的n=5,则输入整数p的最小值是(  )
A、6B、7C、8D、15

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}为等差数列,且a2=3,a6=5,S7=(  )
A、42B、28C、24D、34

查看答案和解析>>

同步练习册答案