精英家教网 > 高中数学 > 题目详情
1.在△ABC中,角A,B,C的对边分别为a,b,c,若(a+b)(sinA-sinB)=c(sinA-sinC).
(1)求角B的大小;
(2)设BC中点为D,且AD=$\sqrt{3}$,求a+2c的最大值.

分析 (1)由正弦定理化简已知等式可得a2+c2-b2=ac,由余弦定理可求cosB=$\frac{1}{2}$,结合范围B∈(0,π),即可求B的值.
(2)设∠BAD=θ,则$θ∈({0,\frac{2π}{3}})$,由正弦定理可得BD=2sinθ,$AB=2sin({\frac{2π}{3}-θ})=\sqrt{3}cosθ+sinθ$,利用三角函数恒等变换的应用可得:$a+2c=2\sqrt{3}cosθ+6sinθ=4\sqrt{3}sin({θ+\frac{π}{6}})$,由$θ∈({0,\frac{2π}{3}})$,可求$θ+\frac{π}{6}∈({\frac{π}{6},\frac{5π}{6}})$,利用正弦函数的性质即可得解最大值.

解答 (本题满分为12分)
解:(1)在△ABC中,∵(a+b)(sinA-sinB)=c(sinA-sinC)
∴由正弦定理可得:(a+b)(a-b)=c(a-c),
即a2+c2-b2=ac,…(2分)
由余弦定理可知$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{1}{2}$,…(4分)
∵B∈(0,π),
∴$B=\frac{π}{3}$…(5分)
(2)∵设∠BAD=θ,则在△ABD中,
由$B=\frac{π}{3}$可知$θ∈({0,\frac{2π}{3}})$,
由正弦定理及$AD=\sqrt{3}$可得$\frac{BD}{sinθ}=\frac{AB}{{sin({\frac{2π}{3}-θ})}}=\frac{AD}{{sin\frac{π}{3}}}=2$,…(7分)
∴BD=2sinθ,$AB=2sin({\frac{2π}{3}-θ})=\sqrt{3}cosθ+sinθ$,…(8分)
∴$a+2c=2\sqrt{3}cosθ+6sinθ=4\sqrt{3}sin({θ+\frac{π}{6}})$,…(10分)
由$θ∈({0,\frac{2π}{3}})$可知$θ+\frac{π}{6}∈({\frac{π}{6},\frac{5π}{6}})$,
∴当$θ+\frac{π}{6}=\frac{π}{2}$,即$θ=\frac{π}{3}$时,a+2c的最大值为$4\sqrt{3}$.…(12分)

点评 本题主要考查了正弦定理,余弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了计算能力和转化思想、数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.某职业学校要从6名男同学,4名女同学中任选3人参加计算机动漫创作比赛,其中女同学甲恰被选中的概率是0.3(结果用数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=aexx-2aex-$\frac{1}{2}$x2+x.
(1)求函数f(x)在(2,f(2))处切线方程;
(2)讨论函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.曲线f(x)=x3+x在(1,f(1))处的切线方程为4x-y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|x2-1<0},B=$\left\{{x|\frac{x-2}{x}<0}\right\}$,则A∩B(  )
A.(-∞,2)B.(0,1)C.(-2,2)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,角A、B、C所对的边长分别为a、b、c,已知a=3,b=4,∠C=$\frac{π}{3}$,则c=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在△ABC中,角A,B,C的对边分别为a,b,c,a=b(sinC+cosC).
(Ⅰ)求∠ABC;
(Ⅱ)若∠A=$\frac{π}{2}$,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设A是由一些实数构成的集合,若a∈A,则$\frac{1}{1-a}$∈A,且1∉A
(1)若3∈A,求A;
(2)证明:若a∈A,则1-$\frac{1}{a}$∈A;
(3)A能否只有一个元素,若能,求出集合A,若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=-|x-2|+ex的零点所在的区间是(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

同步练习册答案