试题分析:解:(Ⅰ)函数
为奇函数………………………………………………2分
现证明如下:
∵函数
的定义域为
,关于原点对称。……………………………………3分
由
…………………5分
∴函数
为奇函数…………………………………………………6分
(Ⅱ)据题意知,当
时,
,
…………7分
∵
在区间
上单调递增,
∴
,即
………………………………………8分
又∵
∴函数
的对称轴为
∴函数
在区间
上单调递减
∴
,即
………………………………………9分
由
,
得
,∴
………………………………………………………………10分
(Ⅲ)当
时,
即
,
,
…………………………………………………12分
令
,
下面求函数
的最大值。
,
∴
……………………………………………………………………13分
故
的取值范围是
………………………………………………………14分
点评:解决该试题的关键是能熟练的运用指数函数和二次函数的性质得到最值,以及根据奇偶性的定义准确的证明,同时对于不等式的恒成立问题,能分离参数法来得到其取值范围。属于中档题。