精英家教网 > 高中数学 > 题目详情
14.已知圆心为C的圆经过O(0,0))和A(4,0)两点,线段OA的垂直平分线和圆C交于M,N两点,且|MN|=2$\sqrt{5}$
(1)求圆C的方程
(2)设点P在圆C上,试问使△POA的面积等于2的点P共有几个?证明你的结论.

分析 (1)求出圆心与半径,即可求圆C的方程;
(2)求出圆心C到直线OA的距离为1,点P到直线OA的距离为1,即可得出结论.

解答 解:(1)OA的中点坐标为(2,0).则直线MN的方程为x=2,
设圆心C (2,b),…(1分)
又∵直径|MN|=2$\sqrt{5}$,∴|CO|=$\sqrt{5}$,∴(2-0)2+b2=5.
解得b=1或-1…(4分)
∴圆心C (2,1)或C(2,-1).
∴圆C的方程为(x-2)2+(y-1)2=5或(x-2)2+(y+1)2=5.…(6分)
(2)|OA|=4,${S_{△POA}}=\frac{1}{2}|{OA}|h=\frac{1}{2}×4×h=2$,∴h=1,
∴点P到直线OA的距离为1…(7分)
又因为圆心C到直线OA的距离为1…(8分)
圆心的半径为$\sqrt{5}$,而$\sqrt{5}-1>1$…(10分)
所以,圆C上共有四个点P使△POA的面积为2…(12分)

点评 本题考查圆的方程,考查点与圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在△ABC中,已知CA=1,CB=2,∠ACB=60°.
(1)求|$\overrightarrow{AB}$|;
(2)已知点D是AB上一点,满足$\overrightarrow{AD}$=λ$\overrightarrow{AB}$,点E是边CB上一点,满足$\overrightarrow{BE}$=λ$\overrightarrow{BC}$.
①当λ=$\frac{1}{2}$时,求$\overrightarrow{AE}$•$\overrightarrow{CD}$;
②是否存在非零实数λ,使得$\overrightarrow{AE}$⊥$\overrightarrow{CD}$?若存在,求出的λ值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.命题:“?x∈R,sinx≤1”的否定是(  )
A.?x∈R,sinx>1B.?x∈R,sinx≤1C.?x∈R,sinx>1D.?x∈R,sinx≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直线l:kx+y-3=0与圆x2+y2=3交于两点A,B且△OAB为等边三角形(O为坐标原点),则k=(  )
A.3B.±3C.$\sqrt{3}$D.$±\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在正方体ABCD-A1B1C1D1中,点M,N分别是B1C1,CC1的中点,则直线A1M与DN的位置关系是相交.(填“平行”、“相交”或“异面”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一质点做直线运动,由始点经过t秒后的距离为s=t3-t2+2t,则t=2秒时的瞬时速度为(  )
A.8m/sB.10m/sC.16m/sD.18m/s

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在平面直角坐标系xOy中的双曲线C,它的中心在原点,焦点在x轴上,F1,F2分别为左、右焦点,F1(-5,0),离心率为5.
(Ⅰ)求双曲线C的标准方程;
(Ⅱ)在双曲线右支上一点P满足|PF1|+|PF2|=14,试判定△PF1F2的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.以下命题中,正确命题的序号是②③.
①函数y=tanx在定义域内是增函数;
②函数y=2sin(2x+$\frac{π}{3}$)的图象关于x=$\frac{π}{12}$成轴对称;
③已知$\overrightarrow{b}$=(3,4),$\overrightarrow{a}$•$\overrightarrow{b}$=-2,则向量$\overrightarrow{a}$在向量$\overrightarrow{b}$的方向上的投影是-$\frac{2}{5}$
④如果函数f(x)=ax2-2x-3在区间(-∞,4)上是单调递减的,则实数a的取值范围是(0,$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列点不是函数f(x)=tan(2x+$\frac{π}{3}$)的图象的一个对称中心的是(  )
A.(-$\frac{2π}{3}$,0)B.($\frac{2π}{3}$,0)C.($\frac{π}{12}$,0)D.(-$\frac{π}{6}$,0)

查看答案和解析>>

同步练习册答案