分析 (1)求出圆心与半径,即可求圆C的方程;
(2)求出圆心C到直线OA的距离为1,点P到直线OA的距离为1,即可得出结论.
解答 解:(1)OA的中点坐标为(2,0).则直线MN的方程为x=2,
设圆心C (2,b),…(1分)
又∵直径|MN|=2$\sqrt{5}$,∴|CO|=$\sqrt{5}$,∴(2-0)2+b2=5.
解得b=1或-1…(4分)
∴圆心C (2,1)或C(2,-1).
∴圆C的方程为(x-2)2+(y-1)2=5或(x-2)2+(y+1)2=5.…(6分)
(2)|OA|=4,${S_{△POA}}=\frac{1}{2}|{OA}|h=\frac{1}{2}×4×h=2$,∴h=1,
∴点P到直线OA的距离为1…(7分)
又因为圆心C到直线OA的距离为1…(8分)
圆心的半径为$\sqrt{5}$,而$\sqrt{5}-1>1$…(10分)
所以,圆C上共有四个点P使△POA的面积为2…(12分)
点评 本题考查圆的方程,考查点与圆的位置关系,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,sinx>1 | B. | ?x∈R,sinx≤1 | C. | ?x∈R,sinx>1 | D. | ?x∈R,sinx≥1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | ±3 | C. | $\sqrt{3}$ | D. | $±\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8m/s | B. | 10m/s | C. | 16m/s | D. | 18m/s |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{2π}{3}$,0) | B. | ($\frac{2π}{3}$,0) | C. | ($\frac{π}{12}$,0) | D. | (-$\frac{π}{6}$,0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com