精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=lg$\frac{1+{2}^{x}+a•{3}^{x}}{3}$.
(1)若f(x)的定义域为(-∞,1),求a的值;
(2)若f(x)在x∈(-∞,1)内恒有意义,求a的取值范围.

分析 (1)由题意可化为a>-[($\frac{2}{3}$)x+($\frac{1}{3}$)x]在(-∞,1)上恒成立,又由f(x)的定义域为(-∞,1)知a=-[($\frac{2}{3}$)1+($\frac{1}{3}$)1]=-1;
(2)f(x)在x∈(-∞,1)内恒有意义可化为$\frac{1+{2}^{x}+a•{3}^{x}}{3}$>0在(-∞,1)上恒成立;即a>-[($\frac{2}{3}$)x+($\frac{1}{3}$)x]在(-∞,1)上恒成立;从而解得.

解答 解:(1)∵f(x)的定义域为(-∞,1),
∴$\frac{1+{2}^{x}+a•{3}^{x}}{3}$>0在(-∞,1)上恒成立;
∴a>-[($\frac{2}{3}$)x+($\frac{1}{3}$)x]在(-∞,1)上恒成立;
又∵y=-[($\frac{2}{3}$)x+($\frac{1}{3}$)x]在(-∞,1)上是增函数,
故a=-[($\frac{2}{3}$)1+($\frac{1}{3}$)1]=-1;
(2)∵f(x)在x∈(-∞,1)内恒有意义,
∴$\frac{1+{2}^{x}+a•{3}^{x}}{3}$>0在(-∞,1)上恒成立;
∴a>-[($\frac{2}{3}$)x+($\frac{1}{3}$)x]在(-∞,1)上恒成立;
又∵y=-[($\frac{2}{3}$)x+($\frac{1}{3}$)x]在(-∞,1)上是增函数,
故a≥-[($\frac{2}{3}$)1+($\frac{1}{3}$)1]=-1;
故a的取值范围为[-1,+∞).

点评 本题考查了函数的性质的判断与应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若将由四个正三角形组成的封闭的几何体称为正四面体,由六个正四边形组成的封闭的几何体称为正六面体,则由正五边形组成的几何体可以称为正十二面体.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解下列不等式:
(1)9x>3x-2
(2)3×4x-2×6x>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足条件:a1=t,an+1=2an+1(n∈N*
(1)判断数列{an+1}(n∈N*)是否是等比数列?
(2)若t=1,令Cn=$\frac{{2}^{n}}{{a}_{n}{a}_{n+1}}$,记Tn=C1+C2+C3+…+Cn(n∈N*).求证:①Cn=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$;②Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知m、n为正整数,a>0且a≠1,且logam+loga(1+$\frac{1}{m}$)+loga(1+$\frac{1}{m+1}$)+…+loga(1+$\frac{1}{m+n-1}$)=logam+logan,求$\frac{m}{n}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知P(x,y)是函数f(x)的图象上的一点,$\overrightarrow{a}$=(1,(x-2)5),$\overrightarrow{b}$=(1,y-2x),$\overrightarrow{a}$∥$\overrightarrow{b}$,数列{an}是公差不为零的等差数列,且f(a1)+f(a2)+…+f(a9)=36,则a1+a2+…+a9=18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.圆(x-r)2+y2=r2(r>0),点M在圆上,O为原点,以∠MOx=φ为参数,那么圆的参数方程为$\left\{\begin{array}{l}{x=r+r•cos2φ}\\{y=r•sin2φ}\end{array}\right.$ (φ为参数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点
(1)证明:PB∥平面AEC;
(2)已知AP=1,AD=$\sqrt{3}$,设EC与平面ABCD所成的角为α,且tanα=$\frac{{\sqrt{3}}}{6}$,求二面角D-AE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在直三棱柱ABC-A1B1C1中,点D是AB的中点,BC=CC1=4,AB=10,CD=3.
(Ⅰ)求证:AC1∥面CDB1
(Ⅱ)求证:C1B⊥面CDB1

查看答案和解析>>

同步练习册答案