精英家教网 > 高中数学 > 题目详情
已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn.求an及Sn
考点:等差数列的前n项和,等差数列的通项公式
专题:等差数列与等比数列
分析:由已知数据易得数列的首项和公差,可得an及Sn
解答: 解:设等差数列{an}的公差为d,
a3=a1+2d=7
a5+a7=2a1+10d=26

解得
a1=3
d=2

∴an=3+2(n-1)=2n+1
Sn=
n(3+2n+1)
2
=n2+2n
点评:本题考查等差数列的通项公式和求和公式,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

现有10名教师,其中男教师6名,女教师4名.
(1)要从中选2名教师去参加会议,有多少种不同的选法?
(2)现要从中选出4名教师去参加会议,求男、女教师各选2名的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知3cscA=cscB•cscC,3sesA=secB•sesC,则cotA的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(-1,1)的函数f(x)满足:对任意x,y∈(-1,1)都有f(x)+f(y)=f(
x+y
1+xy
),当x∈(-1,0)时有f(x)>0.
求证:f(
1
5
)+f(
1
11
)+…+f(
1
n2+3n+1
)
f(
1
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足:na1+(n-1)a2+…+2an-1+an=(
9
10
n-1+(
9
10
n-2+…+
9
10
+1(n=1,2,3…)
(1)求a1,a2,a3的值;
(2)求an的通项公式;
(3)若bn=-(n+1)an,试问是否存在正整数k,使得对于任意的正整数n,都有bn≤bk成立?若存在求出k的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

用0,1,2,3,4,5这六个数字,完成下面三个小题:
(1)若数字允许重复,可以组成多少个不同的五位偶数?
(2)若数字不允许重复,可以组成多少个能被5整除的且百位数字不是3的不同的五位数?
(3)若直线方程ax+by=0中的a,b可以从已知的六个数字中任取两个不同的数字,则直线方程表示的不同直线共有多少条?

查看答案和解析>>

科目:高中数学 来源: 题型:

如果实数x,y满足不等式组
x≤1
x+y-2≥0
y≤2
,则目标函数z=3x+2y最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的渐近线方程为y=±3x,则该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O1和圆O2的极坐标方程分别为ρ2-2
2
ρcos(θ-
π
4
)=2,ρ=2.则经过两圆交点的直线的极坐标方程为
 

查看答案和解析>>

同步练习册答案