精英家教网 > 高中数学 > 题目详情
在△ABC中,已知3cscA=cscB•cscC,3sesA=secB•sesC,则cotA的值为
 
考点:三角函数的化简求值,同角三角函数间的基本关系
专题:三角函数的图像与性质
分析:把正割函数与余割函数化为正弦函数与余弦函数,利用三角形的内角和与诱导公式,化简可得结果.
解答: 解:由3cscA=cscB•cscC,可得:
sinA
3
=sinBsinC
…①,
3sesA=secB•sesC,可得
cosA
3
=cosBcosC
…②,
②-①可得
cosA
3
-
sinA
3
=cosBcosC-sinBsinC
=cos(B+C)=-cosA,
∴4cosA=sinA,
∴cotA=
1
4

故答案为:
1
4
点评:本题考查同角三角函数的基本关系式,三角函数的化简求值,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某一几何体的三视图如图所示.按照给出的尺寸(单位:cm):
(1)请写出该几何体是由哪些简单几何体组合而成的;
(2)求出这个几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={y|y=2x-1,0<x≤1},B={x|(x-a)[x-(a+3)]<0},分别根据下列条件,求实数a的取值范围.
(1)A∪B=B;
(2)A∩B≠∅.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an+1
1
an2
+4
=1,记Sn=a12+a22…+an2,若S2n+1-Sn
m
30
,对任意n∈N*恒成立,
(1)求证:数列{
1
an2
}为等差数列;
(2)求正整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的方程为x-y=0,圆C的一般方程为x2+y2-2x=0,
(1)求圆C的圆心坐标和半径; 
(2)求直线l与圆心C的距离; 
(3)试判断直线l与圆C的位置关系,若相交,则求直线l被圆C截得的弦AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,平面ABC⊥平面PAC,AB=BC,E,F分别是PA,AC的中点.求证:
(1)EF∥平面PBC;
(2)平面BEF⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶,而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶.
(1)请列出2×2列联表.
(2)请用独立性检验方法判断秃顶与患心脏病是否有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn.求an及Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2lnx-
1
x
,对于任意的x1,x2∈(0,+∞),有|f(x1)-f(x2)|≥m|
1
x1
-
1
x2
|,则实数m的取值范围为
 

查看答案和解析>>

同步练习册答案