精英家教网 > 高中数学 > 题目详情

【题目】如图1,在平行四边形中,,点的中点,点的中点,分别沿折起,使得平面平面(点在平面的同侧),连接,如图2所示.

(1)求证:

(2)当,且平面平面时,求三棱锥的体积.

【答案】(1)见解析;(2)1

【解析】

(1)由已知可得△CBF为等边三角形,连接EF,由已知可得△BEF为等边三角形.取BF的中点O,连接OCOE,可得COBFEOBF.从而得到BF⊥平面COE,则BFCE

(2)由(1)知,COBF,结合条件可证OEBF,求得,利用锥体体积公式求解即可.

(1)∵四边形为平行四边形,,点的中点,

,又,∴为等边三角形,

连接,由,得为等边三角形.

的中点,连接,则

平面,则

(2)由(1)知,,又平面平面

平面,又

∴三棱锥的体积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M: 及其上一点A24

1)设圆Nx轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;

2)设平行于OA的直线l与圆M相交于BC两点,且BC=OA,求直线l的方程;

3)设点Tt,o)满足:存在圆M上的两点PQ,使得,求实数t的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率为

1)求椭圆的方程;

2)过作斜率分别为的两条直线,分别交椭圆于点,且,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三角形ABC中,D是垂足,则推广到空间,三棱锥中,O为垂足,且O在三角形BCD内,则类似的结论为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂去年某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8今年,工厂第一次投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本,预计产量年递增10万只,第次投入后,每只产品的固定成本为为常数,,若产品销售价保持不变,第次投入后的年利润为万元.

1)求的值,并求出的表达式;

2)问从今年算起第几年利润最高?最高利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:

(1)求数列的通项公式;

(2)设数列的前项和为,且满足,试确定的值,使得数列为等差数列;

(3)将数列中的部分项按原来顺序构成新数列,且,求证:存在无数个满足条件的无穷等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是

(1)命题“”的否定是“”;

(2)l为直线,为两个不同的平面,若,则

(3)给定命题p,q,若“为真命题”,则是假命题;

(4)“”是“”的充分不必要条件.

A. (1)(4)B. (2)(3)C. (3)(4)D. (1)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于曲线C所在平面上的定点,若存在以点为顶点的角,使得对于曲线C上的任意两个不同的点AB恒成立,则称角为曲线C相对于点界角,并称其中最小的界角为曲线C相对于点确界角.曲线相对于坐标原点确界角的大小是 _________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且椭圆的离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)斜率为的直线交椭圆两点,且.若直线上存在点P,使得是以为顶角的等腰直角三角形,求直线的方程.

查看答案和解析>>

同步练习册答案