【题目】如图1,在平行四边形中,,,点是的中点,点是的中点,分别沿.将和折起,使得平面平面(点在平面的同侧),连接,如图2所示.
(1)求证:;
(2)当,且平面平面时,求三棱锥的体积.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M: 及其上一点A(2,4)
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;
(3)设点T(t,o)满足:存在圆M上的两点P和Q,使得,求实数t的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂去年某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元今年,工厂第一次投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本,预计产量年递增10万只,第次投入后,每只产品的固定成本为为常数,且,若产品销售价保持不变,第次投入后的年利润为万元.
(1)求的值,并求出的表达式;
(2)问从今年算起第几年利润最高?最高利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足: , , .
(1)求数列的通项公式;
(2)设数列的前项和为,且满足,试确定的值,使得数列为等差数列;
(3)将数列中的部分项按原来顺序构成新数列,且,求证:存在无数个满足条件的无穷等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是
(1)命题“,”的否定是“,”;
(2)l为直线,,为两个不同的平面,若,,则;
(3)给定命题p,q,若“为真命题”,则是假命题;
(4)“”是“”的充分不必要条件.
A. (1)(4)B. (2)(3)C. (3)(4)D. (1)(3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于曲线C所在平面上的定点,若存在以点为顶点的角,使得对于曲线C上的任意两个不同的点A,B恒成立,则称角为曲线C相对于点的“界角”,并称其中最小的“界角”为曲线C相对于点的“确界角”.曲线相对于坐标原点的“确界角”的大小是 _________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:过点,且椭圆的离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)斜率为的直线交椭圆于,两点,且.若直线上存在点P,使得是以为顶角的等腰直角三角形,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com