【题目】为了庆祝第一个农民丰收节,西部山区某村统计了自2011年以来每年的年总收入,其中2018年统计的是1月到8月的总收入,统计结果如图所示.根据图形,下列四个判断中,错误的是( )
![]()
A.从2012年起,年总收入逐年增加B.2017年的年总收入在2016年的基础上翻了番
C.年份数与年总收入成正相关D.由图可预测从2014年起年总收入增长加快
科目:高中数学 来源: 题型:
【题目】已知
为坐标原点,点
和点
,动点
满足:
.
(1)求动点
的轨迹曲线
的方程并说明
是何种曲线;
(2)若抛物线
:
的焦点
恰为曲线
的顶点,过点
的直线
与抛物线
交于
,
两点,
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】谢宾斯基三角形是一种分形,由波兰数学家谢宾斯基在1915年提出,先作一个正三角形.挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色代表挖去的面积,那么黑三角形为剩下的面积(我们称黑三角形为谢宾斯基三角形).向图中第5个大正三角形中随机撒512粒大小均匀的细小颗粒物,则落在白色区域的细小颗粒物的数量约是( )
![]()
A.256B.350C.162D.96
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:
的右焦点为
点的坐标为
,
为坐标原点,
是等腰直角三角形.
(1)求椭圆
的方程;
(2)经过点
作直线
交椭圆
于
两点,求
面积的最大值;
(3)是否存在直线
交椭圆于
两点,使点
为
的垂心(垂心:三角形三边高线的交点)?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的右焦点为
,以原点
为圆心,短半轴长为半径的圆恰好经过椭圆
的两焦点,且该圆截直线
所得的弦长为
.
(1)求椭圆
的标准方程;
(2)过定点
的直线交椭圆
于两点
、
,椭圆上的点
满足
,试求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)当
时.
①求函数
在
处的切线方程;
②定义
其中
,求
;
(2)当
时,设
,
(
为自然对数的底数),若对任意给定的
,在
上总存在两个不同的
,使得
成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位对其
名员工的饮食习惯进行了一次调查,并用如图所示的茎叶图表示他们的饮食指数(说明:图中饮食指数低于
的人,喜食蔬菜;饮食指数高于
的人,喜食肉类).
(1)根据所给数据完成下面的
列联表;
喜食蔬菜 | 喜食肉类 | 总计 | |
35岁以上 | |||
35岁以下 | |||
总计 |
(2)能否有
的把握认为该单位员工的饮食习惯与年龄有关?
独立性检验的临界值表:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:
,
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 已知参赛号码为1~4号的四名射箭运动员参加射箭比赛。
(1)通过抽签将他们安排到1~4号靶位,试求恰有一名运动员所抽靶位号与其参赛号码相同的概率;
(2)记1号,2号射箭运动员,射箭的环数为
(
所有取值为0,1,2,3...,10)。
根据教练员提供的资料,其概率分布如下表:
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 0 | 0 | 0 | 0 | 0.06 | 0.04 | 0.06 | 0.3 | 0.2 | 0.3 | 0.04 |
| 0 | 0 | 0 | 0 | 0.04 | 0.05 | 0.05 | 0.2 | 0.32 | 0.32 | 0.02 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com