【题目】已知函数.
(1)当时.
①求函数在处的切线方程;
②定义其中,求;
(2)当时,设,(为自然对数的底数),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.
【答案】(1)①;②8079;(2).
【解析】
(1)①时,,,利用导数的几何意义能求出函数在处的切线方程.
②由,得,由此能求出的值.
(2)根据若对任意给定的,,在区间,上总存在两个不同的,使得成立,得到函数在区间,上不单调,从而求得的取值范围.
(1)①∵,
∴
∴,∴,∵,
所以切线方程为.
②,
.
令,则,.
因为①,
所以②,
由①+②得,所以.
所以.
(2),当时,函数单调递增;
当时,,函数单调递减∵,,
所以,函数在上的值域为.
因为, ,
故,,①
此时,当 变化时、的变化情况如下:
— | 0 | + | |
单调减 | 最小值 | 单调增 |
∵,
,
∴对任意给定的,在区间上总存在两个不同的,
使得成立,当且仅当满足下列条件
,即
令,,
,
当时,,函数单调递增,当时,,函数单调递减所以,对任意,有,即②对任意恒成立.
由③式解得:④
综合①④可知,当时,对任意给定的,
在上总存在两个不同的,使成立.
科目:高中数学 来源: 题型:
【题目】如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F且EF=,则下列结论中错误的是( )
A.AC⊥BEB.EF平面ABCD
C.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆的左、右焦点分别为,离心率.过的直线与椭圆相交于两点,且的周长为.
(1)求椭圆的方程;
(2)若点位于第一象限,且,求的外接圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了庆祝第一个农民丰收节,西部山区某村统计了自2011年以来每年的年总收入,其中2018年统计的是1月到8月的总收入,统计结果如图所示.根据图形,下列四个判断中,错误的是( )
A.从2012年起,年总收入逐年增加B.2017年的年总收入在2016年的基础上翻了番
C.年份数与年总收入成正相关D.由图可预测从2014年起年总收入增长加快
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正所在平面垂直平面,且边在平面内,过、分别作两个平面、(与正所在平面不重合),则以下结论错误的是( )
A.存在平面与平面,使得它们的交线和直线所成角为
B.直线与平面所成的角不大于
C.平面与平面所成锐二面角不小于
D.平面与平面所成锐二面角不小于
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,已知点A(5,-2),B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上,求:
(1)顶点C的坐标;
(2)直线MN的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,焦点为,直线交抛物线于两点,是线段的中点,过作轴的垂线交抛物线于点.
(1)求抛物线的焦点坐标;
(2)若抛物线上有一点到焦点的距离为,求此时的值;
(3)是否存在实数,使是以为直角顶点的直角三角形?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在矩形中,,.将矩形沿对角线翻折形成四面体,若该四面体内接于球,则下列说法错误的是( )
A.四面体的体积的最大值是B.球心为线段的中点
C.球的表面积随二面角的变化而变化D.球的表面积为定值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com