精英家教网 > 高中数学 > 题目详情
19.直线l1:ax-3y+1=0,l2:2x+(a+1)y+1=0,若l1⊥l2,则a=(  )
A.3B.-3C.-3或2D.3或-2

分析 由直线垂直的性质得两直线中x,y的系数乘积之和为0,由此能求出结果.

解答 解:∵直线l1:ax-3y+1=0,l2:2x+(a+1)y+1=0,
l1⊥l2
∴2a+(-3)(a+1)=0,
解得a=-3.
故选:B.

点评 本题考查直线中参数值的求法,是基础题,解题时要认真审题,注意直线垂直的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,满足Sn=2(an-1).
(1)求{an}的通项公式;
(2)记bn=$\frac{{a}_{n+1}}{({a}_{n}-1)({a}_{n+2}-1)}$,数列{bn}的前n项和为Tn,证明:Tn<$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知定义在R上的奇函数f(x)=a×3x+3-x,a为常数.
(1)求a的值;
(2)用单调性定义证明f(x)在[0,+∞)上是减函数;
(3)解不等式f(x-1)+f(2x+3)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某企业生产某种产品,在2011年至2015年所获利润(单位:十万元)的数据如下表:
年份20112012201320142015
年份代号t12345
利润y5.86.67.17.48.1
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该企业所获利润的变化情况,并预测该企业在2016年的所获利润.附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合A={1,2,3,4,5},则集合A的子集的个数为32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)是定义在R上的增函数,令g(x)=f(x)-f(2015-x)
(1)求证:g(x)+g(2015-x)是定值;
(2)判断g(x)在R上的单调性,并证明;
(3)若g(x1)+g(x2)>0,求证:x1+x2>2015.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C的对称中心为原点O,焦点在x轴上,左、右焦点分别为F1、F2,上顶点和右顶点分别为B,A,线段AB的中点为D,且kOD•kAB=-$\frac{1}{2}$,△AOB的面积为2$\sqrt{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过F1的直线1与椭圆C相交于M,N两点,若|MN|=$\frac{12\sqrt{2}}{5}$,求以F2为圆心且与直线l相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的图象向右平移$\frac{π}{4}$个单位,得到函数g(x)的图象,函数g(x)的相邻的两个极值点的距离等于$\frac{π}{2}$,则g(x)的单调递减区间是(  )
A.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈ZB.[kπ+$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z
C.[2kπ+$\frac{5π}{12}$,2kπ+$\frac{11π}{12}$],k∈ZD.[2kπ-$\frac{π}{12}$,2kπ+$\frac{5π}{12}$],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$\root{n}{a}$=-$\root{n}{a}$,则(  )
A.a=0B.a≠0C.a≤0D.a≥0

查看答案和解析>>

同步练习册答案