精英家教网 > 高中数学 > 题目详情
10.已知定义在R上的奇函数f(x)=a×3x+3-x,a为常数.
(1)求a的值;
(2)用单调性定义证明f(x)在[0,+∞)上是减函数;
(3)解不等式f(x-1)+f(2x+3)<0.

分析 (1)根据f(0)=0解出a;
(2)设x1>x2≥0,计算f(x1)-f(x2)并化简,只需证明f(x1)-f(x2)<0即可;
(3)利用单调性和奇偶性得出f(2x+3)<f(1-x),等价于2x+3>1-x,解出x.

解答 解:(1)∵f(x)是定义在R上的奇函数,
∴f(0)=0,即a+1=0,解得a=-1.
(2)f(x)=-3x+3-x
设x1>x2≥0,则f(x1)-f(x2)=3${\;}^{{x}_{2}}$-3${\;}^{{x}_{1}}$+3${\;}^{-{x}_{1}}$-3${\;}^{-{x}_{2}}$,
∵x1>x2≥0,∴-x1<-x2
∴3${\;}^{{x}_{2}}$<3${\;}^{{x}_{1}}$,3${\;}^{-{x}_{1}}$<3${\;}^{-{x}_{2}}$,即3${\;}^{{x}_{2}}$-3${\;}^{{x}_{1}}$<0,3${\;}^{-{x}_{1}}$-3${\;}^{-{x}_{2}}$<0
∴f(x1)-f(x2)=3${\;}^{{x}_{2}}$-3${\;}^{{x}_{1}}$+3${\;}^{-{x}_{1}}$-3${\;}^{-{x}_{2}}$<0,
∴f(x)在[0,+∞)上是减函数.
(3)∵f(x)是奇函数且在[0,+∞)上单调递减,
∴f(x)在R上是减函数.
∵f(x-1)+f(2x+3)<0.
∴f(2x+3)<-f(x-1)=f(1-x),
∴2x+3>1-x,
解得x>$-\frac{2}{3}$.

点评 本题考查了函数单调性与奇偶性综合应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.对于实数a和b,定义运算a*b,运算原理如图所示,则式子($\frac{1}{2}$)-2*lne3的值为(  )
A.8B.15C.16D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.使函数y=3-2cosx取得最小值时的x的集合为(  )
A.{x|x=2kπ+π,k∈Z}B.{x|x=2kπ,k∈Z}C.$\{\left.x\right|x=2kπ+\frac{π}{2},k∈Z\}$D.$\{\left.x\right|x=2kπ-\frac{π}{2},k∈Z\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知方程$\frac{1}{2}$x2=|2x+a|有四个不同的解,则实数a的取值范围是-2<a<2且a≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义在R上的函数f(x)满足f(1-x)=f(x+1),f(x+1)=-f(x),且在[0,1]上单调递减,则(  )
A.f($\frac{7}{2}$)<f($\frac{7}{3}$)<f($\frac{7}{5}$)B.f($\frac{7}{5}$)<f($\frac{7}{2}$)<f($\frac{7}{3}$)C.f($\frac{7}{3}$)<f($\frac{7}{2}$)<f($\frac{7}{5}$)D.f($\frac{7}{5}$)<f($\frac{7}{3}$)<f($\frac{7}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知△ABC中,2sinBsinC=1+cosA,2sinAsinC=cosB,若cosA=$\frac{n}{m}$(m、n为互质的整数,且m>0),则m+n=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标xOy平面上,已知A(x1,y1),B(x2,y2)是以原点O为圆心的单位圆上的两点,∠AOB=θ(θ为钝角).
(1)若点A(1,0),点B(-$\frac{3}{5}$,$\frac{4}{5}$),求tan($\frac{θ}{2}$+$\frac{π}{4}$)的值;
(2)若sin(θ+$\frac{π}{4}$)=$\frac{3}{5}$,求x1x2+y1y2的值;
(3)若点A(1,0),若$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{OC}$,四边形OACB的面积Sθ表示,求用Sθ+$\overrightarrow{OA}$•$\overrightarrow{OC}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线l1:ax-3y+1=0,l2:2x+(a+1)y+1=0,若l1⊥l2,则a=(  )
A.3B.-3C.-3或2D.3或-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知A(1,-1),B(-1,1),在直线x-y-1=0上找一点P,使得||PA|-|PB||最大.

查看答案和解析>>

同步练习册答案